Building Better Measures: Exploration of Pharmacy and Medication-Related Quality

Ben Urick, PharmD, PhD
Research Assistant Professor
Center for Medication Optimization
UNC Eshelman School of Pharmacy

October 15th, 2018
Roadmap

• Current landscape of pharmacy quality measurement
• My research on quality to date
• Takeaways and future research
Research Interests

PharmD-Drake

Pharmacy Practice

PhD-Iowa

Health Policy and Health Services Research

UNC

Big Data and RWE

[Diagram showing the distribution of research interests across different educational institutions and their corresponding fields of study.]
Quality Measurement in Healthcare

• Use of quality measurement has accelerated following passage of ACA
• Quality measurement common across payers, providers, settings
• Quality measure sets supporting models often unscientific:
 “These measures were chosen after an extensive literature review, a review by a Technical Expert Panel, discussions with CMS, and consideration of alignment with other quality reporting efforts...”\(^1\)
• Some evidence performance-based payment harms care for underserved patients\(^2\)

Quality Measurement in Pharmacy

• Lags behind other healthcare sectors
• Increased rapidly since 2014
• Now more than 50% of Part D plan sponsors use quality measures to modify pharmacy payments and fees\(^3\)
• Evidence base for pharmacy quality measures worse than measures for other entities

Key Concepts of Quality Measurement

• Reliability: Extent to which quality signals can be sorted from noise
• Validity: Extent to which measure variation correlates with care quality

Steps for Constructing Performance Measure Set

1. Measure Selection and Definition
2. Application of Measure to Attributed Population
3. Case Mix Adjustment
4. Selection of Scoring Methodology
5. Measure Refinement

Current Research on Pharmacy and Medication-Related Quality
Pharmacy Value Framework

PI: Ben Urick
Co-I: Julie Urmie
Pharmacy Value Framework

Aims
1. Design a framework to measure pharmacy value
2. Apply the framework by developing a draft pharmacy value composite measure

Data Sources and Population
1. Commercial medical, pharmacy claims from 1/1/2012 – 12/31/2013
2. 977 pharmacies and 191,905 patients

Methods
1. Retrospective, cross sectional study
2. Hierarchical linear models for case-mix adjustment of measures
Conceptual Model of Pharmacy Value

Quality of Care
- Structure
 - Select quality-related elements of pharmacies’ work systems
 - External environment
- Process
 - Patient care processes
 - Pharmacist care processes
- Outcomes
 - Changes to health status
 - Patients’ care experiences

Cost of Care

Pharmacy Value
<table>
<thead>
<tr>
<th>Measure</th>
<th>Low Quality</th>
<th>Typical Quality</th>
<th>High Quality</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pharmacy Frequency</td>
<td>Score Mean (Min., Max.)</td>
<td>Pharmacy Frequency</td>
</tr>
<tr>
<td>RASA Adherence</td>
<td>44</td>
<td>0.594 (0.429, 0.713)</td>
<td>612</td>
</tr>
<tr>
<td>Statin Adherence</td>
<td>32</td>
<td>0.527 (0.310, 0.627)</td>
<td>603</td>
</tr>
<tr>
<td>β-blocker Adherence</td>
<td>20</td>
<td>0.54 (0.395, 0.635)</td>
<td>454</td>
</tr>
<tr>
<td>NIDA Adherence</td>
<td>7</td>
<td>0.505 (0.353, 0.592)</td>
<td>60</td>
</tr>
<tr>
<td>Med. Sensitive Hospitalizations</td>
<td>6</td>
<td>0.039 (0.032, 0.047)</td>
<td>159</td>
</tr>
<tr>
<td>Med. Sensitive ED Visits</td>
<td>17</td>
<td>0.128 (0.100, 0.152)</td>
<td>137</td>
</tr>
<tr>
<td>Composite Quality Score</td>
<td>43</td>
<td>---</td>
<td>92</td>
</tr>
</tbody>
</table>

RASA: Renin-angiotensin System Antagonists
NIDA: Non-insulin diabetes agents
Value Matrix for Total Cost of Care (TCOC)

<table>
<thead>
<tr>
<th>TCOC Spending Index Score</th>
<th>Combined Quality Score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low Quality Outlier</td>
</tr>
<tr>
<td>Low Spending Outlier</td>
<td>12</td>
</tr>
<tr>
<td>Typical Spending</td>
<td>22</td>
</tr>
<tr>
<td>High Spending Outlier</td>
<td>9</td>
</tr>
</tbody>
</table>

Urick BY, Urmie JM. Framework to Assess Community Pharmacy Value. Res Soc Adm Pharm. Accepted with Minor Revisions.
Evaluation of the North Carolina Community Pharmacy Enhanced Services Network

PI: Joel Farley & Ben Urick

Co-I: Stefanie Ferreri, Chuck Shasky, Troy Trygstad, Trista Pfeiffenberger

Center for Medicare and Medicaid Innovation HCIA Round 2 (1R01AG050733-01A1)
Impact of Community Pharmacy Enhanced Services Network on Health Outcomes

Aims
1. Design and implement a performance measurement process for community pharmacies
2. Support implementation of enhanced pharmacy services
3. Evaluate the impact of enhanced services on patients' health outcomes and utilization

Data Sources and Population
1. NC Medicaid medical, pharmacy claims from 3/1/2014 – 12/31/2017
2. Pharmacy care activity data 3/1/2015 – 12/31/2017
3. 157,051 Medicaid intervention patients, 253 intervention pharmacies

Methods
1. Patients retrospectively attributed to participating pharmacies
2. Targeted patients received a comprehensive medication review with longitudinal follow up
3. PS-matched difference-in-difference analysis to evaluate program effectiveness
Performance Measure Scoring

Background

• Pharmacies paid capitated rate for attributed patients and additional payments for service delivery
• Measures chosen based on expert opinion
• Quality measured for all North Carolina pharmacies
• Global measures normalized
• Case mix adjustment based on historic data
• Scoring based on standard deviations around grand mean

<table>
<thead>
<tr>
<th>Metric</th>
<th>Outcome Category</th>
<th>Case Mix Adjusted?</th>
<th>Score Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDC: NIDA</td>
<td>Surrogate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>PDC: RASA</td>
<td>Surrogate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>PDC: Statins</td>
<td>Surrogate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>PDC: Multiple Chronic Medications</td>
<td>Surrogate</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>All-Cause ED Visit Rate</td>
<td>Global</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>All-Cause Hospitalization Rate</td>
<td>Global</td>
<td>Yes</td>
<td>2</td>
</tr>
<tr>
<td>Total Cost of Medical Care</td>
<td>Global</td>
<td>Yes</td>
<td>3</td>
</tr>
</tbody>
</table>

PDC=Proportion of days covered (a measure of adherence)
Metric Mean Score Comparisons

<table>
<thead>
<tr>
<th>Metric Label</th>
<th>Intervention Pharmacy Score Mean (SD)</th>
<th>Control Pharmacy Score Mean (SD)</th>
<th>P-value for Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDC Score: NIDA</td>
<td>0.56 (0.27)</td>
<td>0.49 (0.26)</td>
<td>0.002</td>
</tr>
<tr>
<td>PDC Score: Statin</td>
<td>0.57 (0.22)</td>
<td>0.5 (0.25)</td>
<td>0.002</td>
</tr>
<tr>
<td>PDC Score: RASA</td>
<td>0.57 (0.22)</td>
<td>0.51 (0.24)</td>
<td>0.003</td>
</tr>
<tr>
<td>PDC Score: Multiple Chronic Medications</td>
<td>0.6 (0.25)</td>
<td>0.49 (0.24)</td>
<td><0.001</td>
</tr>
<tr>
<td>All-Cause ED Score</td>
<td>1.32 (0.73)</td>
<td>1.37 (0.71)</td>
<td>0.465</td>
</tr>
<tr>
<td>All-Cause Hospitalization Score</td>
<td>1.45 (0.69)</td>
<td>1.39 (0.7)</td>
<td>0.372</td>
</tr>
<tr>
<td>Total Cost of Medical Care Score</td>
<td>1.47 (0.86)</td>
<td>1.55 (0.81)</td>
<td>0.266</td>
</tr>
<tr>
<td>Total Score</td>
<td>6.54 (1.59)</td>
<td>6.29 (1.66)</td>
<td>0.115</td>
</tr>
</tbody>
</table>

PMPM=Per-member, per-month spending

Uricket BY, Ferreri SP, Shaskey C, Pfeiffenberger T, Trygstad T, Farley JF. Using Global Outcomes to Measure Pharmacy Performance: Lessons Learned from Implementing an Alternative Payment Model in Community Pharmacies. *J Manag Care Spec Pharm. Accepted and Awaiting Publication.*
Correlation between Pharmacy Characteristics and Outcomes

<table>
<thead>
<tr>
<th>Survey Variables</th>
<th>ED Visit Rate</th>
<th>Hospitalization</th>
<th>Medical Spending</th>
<th>NIDA PDC</th>
<th>Statin PDC</th>
<th>RASA PDC</th>
<th>Multiple Chronic Medication PDC</th>
<th>Total Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacist(s) allocated non-dispensing work hours</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clinical activities</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Use of automated dispensing</td>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Free home delivery provided</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home visits provided</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td>Smoking cessation program provided</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

Evaluation of Program Impact

• Two primary cohorts:
 • Patients attributed to study pharmacies
 • Patients who received a comprehensive initial pharmacy assessment (CIPA)
 • CIPA = comprehensive medication review with additional follow up

• Inclusion:
 • Medicaid enrolled 10/12 months before and after index
 • Chronic medication users
 • Attributable at least one month

• Exclusion:
 • Enrolled in Medicare
 • Age <18 or >64

• Propensity score matched difference-in-difference models used to evaluate differences in trends over time
Evaluation of Program Impact

PMPQ: Per Member, Per Quarter
CIPA: Comprehensive initial pharmacy assessment
Evaluation of Program Impact

PMPQ: Per Member, Per Quarter
CIPA: Comprehensive initial pharmacy assessment
Evaluation of Program Impact

Outpatient Spending PMPQ

- CIPA Comparison
- Attributed Population Comparison

Quarter: 1 2 3 4 5 6 7 8

Intervention
Control

Emergency Department Spending PMPQ

- CIPA Comparison
- Attributed Population Comparison

Quarter: 1 2 3 4 5 6 7 8

Intervention
Control

PMPQ: Per Member, Per Quarter
CIPA: Comprehensive initial pharmacy assessment
CPESN Program Evaluation Summary

• Successfully built pharmacy network
• Implemented performance scoring system based on broad outcomes
• Varied pharmacy payments based on outcomes
• Improved adherence (9.5% RASA, 10.3% multiple chronic medications)
• Did not impact hospitalizations, ED visits, and spending
• Lack of impact may be due to:
 • Bias and confounding
 • Implementation heterogeneity
 • Patient heterogeneity
Diabetes Medications as a Proxy for Claims-Based Diagnosis of Diabetes

PI: Ben Urick

Co-I: Seth Cook, Dan Gratie

Funding: NC TraCS Institute Pilot Grant (2KR1011816)
Diabetes Medication Proxy

Aims
1. Assess the validity of diabetes medications as a proxy for a claims-based diagnosis of diabetes

Data Sources and Population
1. MarketScan 1% sample, 1/1/2014 – 12/31/2014
2. 152,411 patients aged 40-64 with at least 10 months of enrollment
3. 17,942 claims-based diagnosis; 10,018 medication-based diagnosis

Methods
1. Using claims-based diagnosis as the gold standard, calculated positive predictive value, negative predictive value, sensitivity, and specificity
Positive Predictive Value and Negative Predictive Value

<table>
<thead>
<tr>
<th>Category</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ fill(s)</td>
<td>90.0</td>
<td>94.5</td>
</tr>
<tr>
<td>2+ fills</td>
<td>91.4</td>
<td>94.1</td>
</tr>
<tr>
<td>3+ fills</td>
<td>92.3</td>
<td>93.8</td>
</tr>
<tr>
<td>Metformin alone</td>
<td>83.6</td>
<td>90.4</td>
</tr>
<tr>
<td>Insulin alone</td>
<td>97.3</td>
<td>89.0</td>
</tr>
<tr>
<td>Metformin + any fill</td>
<td>96.8</td>
<td>90.9</td>
</tr>
<tr>
<td>Insulin + any fill</td>
<td>98.5</td>
<td>89.6</td>
</tr>
</tbody>
</table>

Note: PPV = Positive Predictive Value, NPV = Negative Predictive Value.
Sensitivity and Specificity

<table>
<thead>
<tr>
<th>Condition</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+ fill(s)</td>
<td>55.3</td>
<td>99.2</td>
</tr>
<tr>
<td>2+ fills</td>
<td>52.3</td>
<td>99.4</td>
</tr>
<tr>
<td>3+ fills</td>
<td>49.1</td>
<td>99.5</td>
</tr>
<tr>
<td>Metformin alone</td>
<td>18.5</td>
<td>99.5</td>
</tr>
<tr>
<td>Insulin alone</td>
<td>5.1</td>
<td>100</td>
</tr>
<tr>
<td>Metformin + any fill</td>
<td>23.2</td>
<td>99.9</td>
</tr>
<tr>
<td>Insulin + any fill</td>
<td>10.3</td>
<td>100</td>
</tr>
</tbody>
</table>

Percentage (%)
Cancer, Care Coordination, and Medication Use for Multiple Chronic Conditions

PI: Justin Trogdon

Co-I: Jennifer Lund, Katie Reeder-Hayes, Ben Urick, Stephanie Wheeler

Funding: National Institute on Aging (1R01AG050733-01A1)
Who Did What to Whom? Estimating the Relative Contribution of Pharmacists and Primary Care Providers to Quality Measures

PI: Matt Pickering (Pharmacy Quality Alliance) & Ben Urick

Funding: Community Pharmacy Foundation
Relative Contribution of Pharmacists and Primary Care Providers to Quality Measures

Aims
1. Develop and apply selection criteria for medication-related quality measures
2. Estimate the relative contribution of pharmacists and primary care physicians to medication-related and non-medication-related quality measures

Data Sources
1. Medicare 20% sample, 1/1/2014 – 12/31/2015
2. Medicare Data on Provider Practice and Specialty (MD-PPAS), 2015

Methods
1. Attribute patients to pharmacies, physician group practices
2. Construct multi-level models and estimate residual intraclass correlation coefficient (RICC) for both groups
3. Calculate RICC ratio to estimate relative contribution
Relationship between Telepharmacy Care and Healthcare Quality

PI: Ben Urick

Funding: Cardinal Health (Pending)
Telepharmacy and Healthcare Quality

Aims
1. Assess differences in medication adherence and medication appropriateness between telepharmacies and traditional pharmacies

Data Source
1. Dispensing data from first 18 months of telepharmacy operation
2. Dispensing data for same period from support pharmacies

Methods
1. Cross sectional design
2. Quality measures comprised of RASA, NIDA, and statin adherence as well as high-risk medications in the elderly and statin use in persons with diabetes
3. Hierarchical mixed models comparing quality measures across pharmacy types
Takeaways and Future Work
Key Takeaway Points

• Use of quality measurement growing
• Stakes for performance are getting higher
• However:
 • Very complex systems
 • Many decisions are arbitrary or based on expert opinion
 • Little research has evaluated reliability, validity of component, composite measures
 • Performance-based payments may not correlate to actual performance
• More research is needed to refine these systems
Future Work

• Continued work on reliability, validity of pharmacy quality measures
• Development of reliable, valid composite measures
• Refine quality measure for multiple chronic conditions adherence
• Assessment of impact of implementation of community pharmacy enhanced services network on outcomes for Medicare, dually enrolled beneficiaries
• Maintenance of adherence to chronic medications throughout cancer journey
Building Better Measures: Exploration of Pharmacy and Medication-Related Quality

Questions?

benurick@email.unc.edu