ABSTRACT

Purpose. To determine intrinsic breast cancer subtypes represented within categories defined by quantitative hormone receptor (HR) and HER2 expression.

Methods. We merged 1,557 cases from three randomized phase III trials into a single data set. These breast tumors were centrally reviewed in each trial for quantitative ER, PR, and HER2 expression by immunohistochemistry (IHC) stain and by reverse transcription-quantitative polymerase chain reaction (RT-qPCR), with intrinsic subtyping by research-based PAM50 RT-qPCR assay.

Results. Among 283 HER2-negative tumors with <1% HR expression by IHC, 207 (73%) were basal-like; other subtypes, particularly HER2-enriched (48, 17%), were present. Among the 1,298 HER2-negative tumors, borderline HR (1%–9%) staining was uncommon (n = 39), and these tumors were heterogeneous: 17 (44%) luminal A/B, 12 (31%) HER2-enriched, and only 7 (18%) basal-like. Including them in the definition of triple-negative breast cancer significantly diminished enrichment for basal-like cancer (p < .05). Among 106 HER2-positive tumors with <1% HR expression by IHC, the HER2-enriched subtype was the most frequent (87, 82%), whereas among 127 HER2-positive tumors with strong HR (>10%) expression, only 69 (54%) were HER2-enriched and 55 (43%) were luminal (39 luminal B, 16 luminal A). Quantitative HR expression by RT-qPCR gave similar results. Regardless of methodology, basal-like cases seldom expressed ER/ESR1 or PR/PGR and were associated with the lowest expression level of HER2/ERBB2 relative to other subtypes.

Conclusion. Significant discordance remains between clinical assay-defined subsets and intrinsic subtype. For identifying basal-like breast cancer, the optimal HR IHC cut point was <1%, matching the American Society of Clinical Oncology and College of American Pathologists guidelines. Tumors with borderline HR staining are molecularly diverse and may require additional assays to clarify underlying biology. The Oncologist 2015;20:1–9

Implications for Practice: This study pooled centrally reviewed hormone receptor (HR) and HER2 data and individual gene expression and intrinsic subtyping from three cooperative group trials. The results indicated that the optimal cut point for defining triple-negative breast cancer, if the goal is to enrich for basal-like biology, is to adopt the guideline of <1% staining. Tumors with borderline HR expression are highly biologically heterogeneous, which raises the question of whether these tumors should be considered indeterminate. A proportion of clinically defined HER2-negative tumors were defined as molecular HER2-enriched subtype; however, whether they are suitable for anti-HER2 therapy needs to be determined.
INTRODUCTION

Breast cancer clinical decision making is based on assays for ER and PR by immunohistochemistry (IHC) and HER2 by IHC and/or fluorescence in situ hybridization (FISH). The American Society of Clinical Oncology (ASCO) and the College of American Pathologists (CAP) issued a joint guideline in 2010 regarding IHC determination of hormone receptor (HR; ER and PR, collectively) status [1] that recommended the most restrictive cut points of ≥1% staining for calling a tumor ER-positive or PR-positive. Similarly, ASCO and CAP issued clinical practice guidelines for HER2 in 2007 [2], 2012 [3], and 2013 [4]. Together, these guidelines define the use of endocrine therapy in HR-positive and HER2-targeted therapy in HER2-positive disease and the populations of interest for novel approaches in clinical trials.

The molecular entities within these clinical subsets and how they might vary across quantitative HR or HER2 categories have not been established, although considerable evidence exists regarding molecular heterogeneity within identifiable clinical subsets [5–9]. Triple-negative breast cancer (TNBC), for example, is characterized by the absence of HR and HER2 expression clinically but represents a diverse population of biologic entities [10–12]. The majority of TNBCs are of the basal-like intrinsic subtype [13, 14], although other molecular subtypes such as luminal or HER2-enriched are also represented within TNBC [10, 12]. Several definitions of ER and PR negativity (from <1% to <10%) have been used as entry criteria for clinical trials in TNBC; borderline (1%–9%) hormone receptor staining is sometimes included in TNBC and sometimes not.

In this study, we compared centrally performed clinical assays of quantitative ER, PR, and HER2 expression with molecular intrinsic subtypes identified by PAM50, an open-source, centroid-based, 50-gene subtype predictor [15], in tumors collected across three phase III randomized clinical trials and determined the molecular populations within strongly hormone receptor-positive tumors, borderline tumors, and triple-negative tumors.

MATERIALS AND METHODS

Study Populations

Molecular (PAM50 intrinsic subtyping) and clinical-pathological data (including ER, PR, HER2, and outcome data) were collected from three phase III randomized adjuvant treatment trials and merged into a single data set for analysis. In GEICAM/9906, 1,246 women with node-positive breast cancer were randomized to fluorouracil, epirubicin, and cyclophosphamide (FEC) alone for six cycles versus FEC for four cycles followed by weekly paclitaxel for eight cycles, with tamoxifen given to HR-positive patients [16]. In National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial MA.5, 710 premenopausal women with node-positive breast cancers were randomized to oral cyclophosphamide, methotrexate, and fluorouracil versus oral cyclophosphamide, epirubicin, and fluorouracil [17]. In NCIC CTG MA.12, 672 premenopausal women received adjuvant anthracycline-based or CMF chemotherapy and then were randomized to tamoxifen versus placebo for 5 years [18]. The CONSORT diagram for these three trials is provided in Figure 1. Together, tumors collected across the three trials formed a combined cohort of 1,690 cases with formalin-fixed paraffin embedded tumor samples with intrinsic subtyping, and 1,557 of these cases had quantitative ER, PR, and HER2 centrally reviewed in each trial. Previous analyses found no statistically significant differences in clinicopathological characteristics or outcomes between subtyped trial subsets and the overall trial cohorts [19–21]. All biomarker studies were approved by the institute research ethics board of the University of North Carolina at Chapel Hill.

Intrinsic Subtyping

The previously published reverse transcription-quantitative polymerase chain reaction (RT-qPCR)-based intrinsic subtypes were used [19–21] and included the original log-expression ratios of the 50 PAM50 genes normalized to the 5 housekeeper genes (open-source version of the PAM50 intrinsic subtype classifier). The tumor specimens used for RT-qPCR were obtained from the same tissue blocks used for building tissue microarrays. These data also included quantitative individual gene expression levels for standard clinical markers (ESR1 for ER, PGR for PR, and ERBB2 for HER2). The RNA preparation from paraffin cores, the RT-qPCR assay for the PAM50 panel and reference genes, and the classification of tumor samples into the intrinsic subtypes (luminal A, luminal B, HER2-enriched, basal-like, and normal-like subtypes) have been described previously [15].

Central ER, PR, and HER2 Determination

Data on ER, PR, and HER2 expression, assessed centrally in each trial, were included in the combined data set. Semiquantitative ER and PR expression (percentage of positive tumor nuclei) were determined by visual assessment of IHC staining by corresponding study pathologists; tumor samples from NCIC CTG MA.5 and MA.12 were assessed by T.O.N. and GEICAM/9906 by I. Aranda. The same scoring criteria were used by the two pathologists; however, no interobserver variation study was performed. HER2 expression was determined by IHC, and the amplification ratio was determined by FISH for NCIC CTG MA.5 and MA.12 and by chromogenic in situ hybridization (CISH) for GEICAM 9906, according to ASCO/CAP guidelines [2]. Technical details of the IHC methodology are provided in supplemental online Table 1.

For our analysis, HER2 negativity by clinical assay was defined as IHC 0/1+ or 2+ confirmed by a FISH/CISH amplification ratio <2.0. ER and/or PR IHC expression of 1%–9% was considered “borderline,” and ≥10% expression was considered positive. If ER and PR fell into discrepant categories or one was borderline, the higher score defined the hormone receptor status for that case.

Statistical Analysis

In the combined data set, the PAM50 gene expression data were standardized across the three trials using z scores. The population means and standard deviations of parameters (gene expression levels in this scenario) were estimated from a stratified randomized subpopulation of the three trials based on the percentage of clinically ER-positive tumors (n = 1,185). This
subpopulation included all cases from NCIC CTG MA.5 ($n = 380$) and MA.12 ($n = 364$) and 441 cases from GEICAM/9906 (including all the ER-negative cases [$n = 171$]). For balance, 270 ER-positive tumors were randomly selected from GEICAM/9906. The mean and standard deviations were then estimated from this subpopulation ($n = 1,185$) and used to transform to z scores for the entire combined cohort ($n = 1,557$). The expression profiles were used to calculate the luminal signatures and proliferation index.

The standardized values of $ESR1$, PGR, and $ERBB2$ gene expression levels were also rescaled to a relative scale of 1–10. In brief, each value was recalculated as $(V - \text{min}V) / (\text{max}V - \text{min}V) \times 10$, in which V represents the value of the gene expression, min indicates minimal, and max indicates maximal. This allows $ESR1$, PGR, and $ERBB2$ to have different means and standard deviations but equal ranges.

The frequencies of the PAM50 intrinsic subtype among cases clinically ER/PR 1% and HER2-negative versus ER/PR 1%–9% and HER2-negative were compared and tested using chi-square statistics and Fisher’s exact test, as appropriate. The variation of quantitative ER and PR expression measured by IHC and gene expression of $ESR1$, PGR, and $ERBB2$ measured by RT-qPCR across the intrinsic subtypes were examined using box-and-whisker plots and analysis of variance. Pairwise Student t tests were used to compare the differences in expression levels between groups, and the reported p values were adjusted for multiple comparisons by the Benjamini and Hochberg method [22]. All statistical tests were two-sided.

Figure 1. REMARK diagram, including intrinsic subtype frequencies for each trial.
Abbreviations: BLBC, basal-like subtype; HER2-E, HER2-enriched subtype; LumA, luminal A subtype; LumB, luminal B subtype.
RESULTS

ER, PR, and HER2 Categories and Intrinsic Subtype

Table 1 summarizes the clinical-pathological characteristics and adjuvant treatments administered to the study cohorts overall and within each trial.

Among the 1,557 tumors (Fig. 1), 1,298 (83.4%) were centrally HER2 negative. Of these 1,298 HER2-negative tumors, 283 (21.8%) were classified as ER or PR negative (<1% staining), 39 (3%) were ER or PR borderline (1%–9% staining), and 976 (75.2%) were strongly ER or PR positive (≥10%).

Of 259 centrally confirmed HER2-positive tumors in the cohort, 106 (40.9%) were HR negative, 26 (10.0%) were HR borderline, and 127 (49.0%) were HR positive.

In the overall cohort (1,557 tumors), 228 (15%) tumors were basal-like, 338 (22%) were luminal A, 510 (33%) were luminal B, and 60 (4%) were normal-like. Table 2 summarizes the distribution of intrinsic subtypes by ER/PR and HER2 categories.

Within HER2-negative tumors, regardless of whether the ER and PR cut point was <1% or <10%, most HR-negative, HER2-negative tumors were identified as basal-like; however, all other intrinsic tumor subtypes (luminal A, luminal B, and HER2-enriched) were also identified. The basal-like subtype composed 73% (207) of the 283 HER2-negative tumors with <1% ER/PR staining; <10% of these ER/PR <1%, HER2-negative tumors were luminal. The 39 borderline (1%–9%) ER-, PR-, or HER2-negative tumors were heterogeneous: only 18% (7) were basal-like, 44% (17) were either luminal A or B, and 31% (12) were HER2-enriched. These borderline tumors included significantly fewer basal-like tumors than tumors identified by <1% HR cut point (p < .0001). If these borderline tumors were included in defining TNBC, only 66% (214) of the total 322 HER2-negative tumors with either <1% or 1%–9% HR would be basal-like. Interestingly, depending on the ER or PR cut point used, 10%–30% of HER2-negative tumors were classified by gene profiling as the HER2-enriched subtype (Table 2).

Among the 106 HER2-positive tumors that were HR negative using the <1% cut point, most (82%, 87) were HER2-enriched. Conversely, among the 127 HER2-positive tumors that were strongly HR positive (>10% ER or PR staining), only 54% (69) were HER2-enriched and 43% (55) were either luminal A or B, with luminal B appearing more frequently than luminal A (39 luminal B, 16 luminal A). Among the 26 HER2-positive tumors that were ER or PR borderline, most (77%, 20) were HER2-enriched (Table 2).

Quantitative ER, PR, and HER2 Expression by IHC and RT-qPCR

Among the 228 basal-like tumors, 93.4% (213 of 228) had <1% ER or PR staining by IHC (Table 2; Fig. 2, 3). This subtype had low expression of ESR1 and PGR by RT-qPCR (supplemental online Fig. 1A, 2B). Ten (4%) basal-like tumors had ER staining; 2 of these had borderline (1%–9%) expression and eight had high ER staining (50%–100% of cells positive). Eleven (5%) basal-like tumors had PR staining; 6 of these had borderline (1%–9%) expression. Overall, basal-like breast tumors were significantly associated with low expression of ESR1 and PGR (gene expression of ER and PR measured by qPCR).

ESR1 gene expression correlated moderately well with ER protein expression by IHC (supplemental online Fig. 1B) (Pearson’s correlation: 0.56; 95% CI: 0.46–0.67; p < .0001). The majority of tumors with high ESR1 expression by RT-qPCR fell into the luminal A or B subtype (supplemental online Fig. 1). Among the 415 low (or no) ER expressors, that is, tumors with ESR1 expression level below the median and no ER expression (0% positive tumor cells) detected by IHC, the majority of cases were basal-like (216, 52.0%) or HER2-enriched (153, 36.9%), with only a small proportion luminal A (16, 3.9%), luminal B (20, 4.8%), or normal-like (10, 2.4%) (supplemental online Fig. 1B). In contrast, among the 45 tumors with ESR1 expression levels above the median but without ER staining by IHC, the most frequent subtypes were luminal A (20, 44.4%) and luminal B (14, 31.1%), followed by HER2-enriched (7, 15.6%), basal-like (2, 4.4%), and normal-like (2, 4.4%). As demonstrated in Figure 3A, the percentage of ER-positive cells did not discriminate luminal A from luminal B tumors, as illustrated by similar mean ER IHC expression values (66% vs. 67%) (Fig. 2A) and nearly identical distributions (Fig. 3A).

The majority of PR-positive tumors by IHC also had higher PGR gene expression than those that were PR negative (supplemental online Fig. 2B) (Pearson’s correlation: 0.59; 95% CI: 0.56–0.62; p < .0001). Similar to ESR1/ER, among the 464 low (or no) PR expressors, that is, tumors with PGR gene expression level below the median value (4.1) and no PR expression (0% positive tumor cells) detected by IHC, the majority of cases were basal-like (196, 42.2%) or HER2-enriched (163, 35.1%), with a small proportion categorized as other subtypes: luminal A (18, 3.9%), luminal B (78, 16.8%), and normal-like (9, 1.9%). Compared with ER/ESR1, a larger subset of tumors (n = 102) was PR negative by IHC but expressed high PGR at the mRNA level. Among this subset, the frequencies of other intrinsic subtypes were comparable: basal-like (21, 20.6%), HER2-enriched (25, 24.5%), luminal A (23, 22.5%), luminal B (24, 23.5%), and normal-like (9, 8.8%) (supplemental online Fig. 2B). In contrast to ER, PR discriminated between the two luminal subtypes by genomic assay. Luminal A tumors had significantly more PR-positive cells than luminal B tumors (mean 67% vs. 38%, p < .0001) (Fig. 2B), and the distribution of PR values between the two luminal subtypes was clearly different (Fig. 3B).

Clinically HER2-positive tumors had similar variations in hormone receptor expression by subtype (test of equal densities, p = .03) (Fig. 3C, 3D); however, the differences were smaller than in HER2-negative tumors. Within HER2-positive tumors, ER expression by IHC was slightly lower in luminal A compared with luminal B (mean 32% vs. 50%, p = .06), and PR expression was slightly higher (mean 49% vs. 31% positive, p = .08) (Fig. 3C). ERBB2 gene expression was significantly higher in HR-negative cases compared with HR-positive tumors (p = .004) (supplemental online Fig. 3). The lowest ERBB2 gene expression among all groups was seen in HR <1% and HER2 negative. As anticipated, the HER2-enriched genomic subtype had the highest HER2/ERBB2 mRNA expression level, which was significantly higher (p < .0001 in all cases) than the other subtypes.
ER, PR, and HER2 Categories and Proliferation Index and Luminal Signatures

Intrinsic subtype gene expression is an integrated evaluation; the subtypes vary by not only hormone receptor and HER2-related gene expression but also by sets of genes related to other functions such as proliferation, which is itself prognostic of outcome in cohorts treated only with endocrine therapy, independent of subtype [7]. In evaluating the proliferation index and luminal gene signatures by PAM50 across the clinical IHC subgroups (Fig. 4A, 4B), ER/PR-negative (<1%), HER2-negative tumors had the highest proliferation index; ER/PR-borderline (1%–9%), HER2-negative tumors had mean proliferation index levels that were significantly lower ($p = .02$) than true triple negatives and significantly higher than HR-positive, HER2-negative tumors ($p = .0001$), although this was highly variable. Similar to the intrinsic subtype findings, borderline tumors had intermediate luminal signatures that were significantly higher than true triple negative ($p < .0001$) and

Table 1. Characteristics and treatments of the combined cohort of 1,557 patients subjected to intrinsic subtyping by PAM50 and central quantitative hormone receptor and HER2 testing

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>GEICAM/9906 (n = 813)</th>
<th>NCIC.CTG MA.5 (n = 380)</th>
<th>NCIC.CTG MA.12 (n = 364)</th>
<th>Total (n = 1,557)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>0</td>
<td>0</td>
<td>92 (25.3)</td>
<td>92 (5.9)</td>
</tr>
<tr>
<td>1–3</td>
<td>502 (61.7)</td>
<td>222 (58.4)</td>
<td>201 (55.2)</td>
<td>925 (59.4)</td>
</tr>
<tr>
<td>≥4</td>
<td>311 (38.3)</td>
<td>158 (41.6)</td>
<td>71 (19.5)</td>
<td>540 (34.7)</td>
</tr>
<tr>
<td>Tumor status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 (≤2 cm)</td>
<td>337 (41.5)</td>
<td>137 (36.1)</td>
<td>149 (40.9)</td>
<td>623 (40)</td>
</tr>
<tr>
<td>T2 (2.1–5 cm)</td>
<td>430 (52.9)</td>
<td>194 (51.1)</td>
<td>188 (51.6)</td>
<td>812 (52.2)</td>
</tr>
<tr>
<td>T3 (>5 cm)</td>
<td>46 (5.7)</td>
<td>21 (5.5)</td>
<td>26 (7.1)</td>
<td>93 (6.0)</td>
</tr>
<tr>
<td>T4 (locally advanced)</td>
<td>0</td>
<td>0</td>
<td>1 (0.3)</td>
<td>1 (0.1)</td>
</tr>
<tr>
<td>NA</td>
<td>0</td>
<td>28 (7.4)</td>
<td>0</td>
<td>28 (1.8)</td>
</tr>
<tr>
<td>Adjuvant chemotherapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMF</td>
<td>0</td>
<td>194 (51.1)</td>
<td>151 (41.5)</td>
<td>345 (22.2)</td>
</tr>
<tr>
<td>CEF/AC</td>
<td>0</td>
<td>186 (48.9)</td>
<td>213 (58.5)</td>
<td>399 (25.6)</td>
</tr>
<tr>
<td>FEC</td>
<td>413 (50.8)</td>
<td>0</td>
<td>0</td>
<td>413 (26.5)</td>
</tr>
<tr>
<td>FEC-P</td>
<td>400 (49.2)</td>
<td>0</td>
<td>0</td>
<td>400 (25.7)</td>
</tr>
<tr>
<td>Adjuvant endocrine therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>169 (20.8)</td>
<td>380 (100)</td>
<td>183 (50.3)</td>
<td>732 (47)</td>
</tr>
<tr>
<td>Yes</td>
<td>644 (79.2)</td>
<td>0</td>
<td>181 (49.7)</td>
<td>825 (53)</td>
</tr>
<tr>
<td>ER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>171 (21)</td>
<td>148 (38.9)</td>
<td>141 (38.7)</td>
<td>460 (29.5)</td>
</tr>
<tr>
<td>Positive (>1%)</td>
<td>642 (79)</td>
<td>232 (61.1)</td>
<td>223 (61.3)</td>
<td>1097 (70.5)</td>
</tr>
<tr>
<td>PR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>247 (30.4)</td>
<td>156 (41.1)</td>
<td>163 (44.8)</td>
<td>566 (36.4)</td>
</tr>
<tr>
<td>Positive (>1%)</td>
<td>566 (69.6)</td>
<td>224 (58.9)</td>
<td>201 (55.2)</td>
<td>991 (63.6)</td>
</tr>
<tr>
<td>HER2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative or normal</td>
<td>697 (85.7)</td>
<td>304 (80)</td>
<td>297 (81.6)</td>
<td>1,298 (83.4)</td>
</tr>
<tr>
<td>Overexpression or amplified</td>
<td>116 (14.3)</td>
<td>76 (20)</td>
<td>67 (18.4)</td>
<td>259 (16.6)</td>
</tr>
</tbody>
</table>

Data are shown as number (percentage).
Abbreviations: AC: doxorubicin (Adriamycin) and cyclophosphamide; CEF: cyclophosphamide, epirubicin, and fluorouracil; CMF, cyclophosphamide, methotrexate, and fluorouracil; FEC: fluorouracil, epirubicin, and cyclophosphamide; NA, not available; P, paclitaxel.

Table 2. Frequencies of intrinsic subtypes within centrally confirmed ER/PR and HER2 categories

<table>
<thead>
<tr>
<th>Subtype</th>
<th>ER/PR− (<1%)</th>
<th>ER/PR+ (≥10%)</th>
<th>ER/PR borderline (1%–9%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basal-like</td>
<td>207 (73.1)</td>
<td></td>
<td>7 (17.9)</td>
</tr>
<tr>
<td>HER2-E</td>
<td>48 (17)</td>
<td>87 (82.1)</td>
<td>12 (30.8)</td>
</tr>
<tr>
<td>Luminal A</td>
<td>6 (2.1)</td>
<td>3 (2.8)</td>
<td>7 (17.9)</td>
</tr>
<tr>
<td>Luminal B</td>
<td>15 (5.3)</td>
<td>8 (7.5)</td>
<td>10 (25.6)</td>
</tr>
<tr>
<td>Normal-like</td>
<td>7 (2.5)</td>
<td>2 (1.9)</td>
<td>3 (7.7)</td>
</tr>
</tbody>
</table>

Data are shown as number (percentage).
Abbreviations: −, negative; +, positive; E, enriched.

ER, PR, and HER2 Categories and Proliferation Index and Luminal Signatures

Intrinsic subtype gene expression is an integrated evaluation; the subtypes vary by not only hormone receptor and HER2-related gene expression but also by sets of genes related to other functions such as proliferation, which is itself prognostic of outcome in cohorts treated only with endocrine therapy, independent of subtype [7]. In evaluating the proliferation index and luminal gene signatures by PAM50 across the clinical IHC subgroups (Fig. 4A, 4B), ER/PR-negative (<1%), HER2-negative tumors had the highest proliferation index; ER/PR-borderline (1%–9%), HER2-negative tumors had mean proliferation index levels that were significantly lower ($p = .02$) than true triple negatives and significantly higher than HR-positive, HER2-negative tumors ($p = .0001$), although this was highly variable. Similar to the intrinsic subtype findings, borderline tumors had intermediate luminal signatures that were significantly higher than true triple negative ($p < .0001$) and
Figure 2. Quantitative IHC showing ER (A) and PR (B) expression by intrinsic subtype in 1,557 breast tumors demonstrating rare ER or PR expression in basal-like breast cancer and substantial heterogeneity of expression among other subtypes. Individual tumors are colored according to their clinical hormone receptor and HER2 status: ER/PR <1%, HER2 negative (yellow); ER/PR borderline (1%–9%), HER2 negative (red); ER/PR negative (<1%), HER2 positive (pink); ER/PR positive (≥1%), HER2 positive (light blue); ER/PR positive (≥10%), HER2 negative (dark blue).

Abbreviations: HER2-E, HER2-enriched subtype; IHC, immunohistochemistry.

Figure 3. Density plot illustrating quantitative hormone receptor staining across the intrinsic subtypes of all 1,557 breast tumors—ER (A) and PR (B)—and for 259 clinically HER2-positive tumors—ER (C) and PR (D). Although basal-like and HER2-E are typified by low or no staining, luminal A and B have similar staining distributions for ER; however, PR is significantly lower in luminal B than luminal A.

Abbreviations: HER2-E, HER2-enriched subtype; IHC, immunohistochemistry.
significantly lower than HR-positive, HER2-negative tumors \((p < .0001) \). This result provides additional evidence that borderline tumors differ in prognostically relevant gene expression from true triple negatives and strongly hormone receptor-positive tumors.

DISCUSSION

This study examined the heterogeneity of breast cancer intrinsic subtypes within quantitative hormone receptor categories by either IHC or RT-qPCR. The definition of triple-negative breast cancer for clinical trials has been variable, including up to 9% ER or PR staining. We found that including borderline ER or PR in the definition of triple-negative breast cancer significantly diluted the proportion that were basal-like; a substantial proportion of those that would be included by this looser definition of TNBC were luminal breast cancers. Basal-like breast cancer composed 73% of TNBC defined by ER/PR \(\leq 1\% \) staining but only 66% if up to 10% ER or PR staining was included. This supports using the ASCO/CAP-recommended cut point of ER/PR \(\leq 1\% \) to define HR-negative breast cancer and TNBC. Basal-like tumors rarely expressed hormone receptors, using either IHC or RT-qPCR. Our findings are in keeping with other studies that have found that the percentage of basal-like breast cancers within clinical TNBC can vary from 50% to 70% depending on the population studied [12].

In our centrally reviewed data, borderline ER/PR staining (1%–9%) represented a rare group, with only 65 borderline cases identified among all 1,557 tumors, but they were a mixed group that included all intrinsic subtypes. Less than 20% of the 39 HER2-negative, HR-borderline tumors were basal-like; almost one-third were HER2-enriched, and nearly half were luminal. The same was true of HER2-positive, HR-borderline tumors: most were HER2-enriched, but >15% were luminal. These findings contrast to a degree with those of a study by Iwamoto et al. [23], who used the Affymetrix U133A chip (Affymetrix, Santa Clara, CA, http://www.affymetrix.com; which includes only 45 of the 50 genes needed for the PAM50 algorithm [24]) and found that, among 16 ER-borderline (1%–9% staining) HER2-negative tumors, only 2 were luminal and 12 were basal-like.

Our study cannot address therapeutic sensitivity, for example, whether HR-borderline luminal tumors are endocrine sensitive or whether lengthy endocrine therapy can be omitted for HR-borderline basal-like tumors. However, this study raises the question of whether borderline HR staining should be considered indeterminate, requiring additional assays to clarify underlying biology.

Several limitations of this study should be noted. We used a research version of the open-source PAM50 intrinsic subtype classifier; this is one method of classifying tumors that can reliably identify intrinsic subtypes such as the luminal, HER2-enriched, and basal-like subtypes but cannot identify other subtypes such as basal-like subsets [10], Claudin-Low tumors [25], molecular apocrine tumors [26], or immunomodulatory subsets [10]. Another limitation of this study was that the central immunostaining for GEICAM/9906 was done in Spain, whereas that for NCIC CTG MA.5 and MA.12 was performed in Canada. No cross-comparison studies were done between the two central laboratories for ER and PR determination.

Regardless of ER/PR cut point, we found that 10%–30% of HER-negative tumors by clinical assay were HER2-enriched by gene expression assay. This finding is consistent with previous studies demonstrating that not all HER2-enriched tumors are clinically HER2 positive [12]. In our study, clinically HER2-positive tumors had different intrinsic subtype distributions. Among HER2-positive, HR-negative tumors, >80% were HER2-enriched. Among HER2-positive, strongly HR-positive tumors, barely more than half were HER2-enriched, with the remainder largely luminal subtypes. With recent studies suggesting that the HER2-enriched subtype is particularly sensitive to HER2-targeting agents, this finding may be clinically meaningful [27–29]. Recent studies suggest that subtype markedly affects response to HER2 targeting [30] and tumor behavior more
Although even with those cut points, cancer is that the optimal cut point for enriching for basal-like breast subtyping from three cooperative group trials and found. This study pooled centrally reviewed HR and HER2 data and can enrich for intrinsic subtypes of interest but that intrinsic relationships of subtype and quantitative PR staining. Luminal A/B tumors from the NCIC studies, finding similar differentiated subtype but also found that, within luminal A, those with higher PR had worse outcome. The study reported in this paper included those 536 luminal A/B tumors with the addition of 395 luminal A/B tumors from the NCIC studies, finding similar relationships of subtype and quantitative PR staining. This study found that quantitative receptor categories can enrich for intrinsic subtypes of interest but that intrinsic subtype heterogeneity still persists within these categories. This study pooled centrally reviewed HR and HER2 data and RT-qPCR-based individual gene expression and intrinsic subtyping from three cooperative group trials and found that the optimal cut point for enriching for basal-like breast cancer is <1% staining for either hormone receptor, although even with those cut points, <75% were basal-like in our study. This aligns with the ASCO/CAP guideline of <1% HR staining. Tumors with borderline quantitative hormone receptor staining were heterogeneous from all standpoints; they were approximately equally divided between luminal and nonluminal subtypes. This raises the question of whether borderline HR staining should be considered indeterminate and require additional assays to clarify underlying biology. We also found, as others have, that >10% of clinically HER2-negative tumors were molecularly classified as HER2-enriched, but whether they are suitable for anti-HER2 therapy needs to be determined.

Acknowledgments

We are grateful to the Breast International Group-North American Breast Cancer Group (BIG-NABCG) collaboration, including the leadership of Drs. Nancy Davidson, Martine Piccart, and Larry Norton and the coordination of Rebecca Enos. We thank Dr. Ignacio Aranda for his assistance for interpretation of the standard clinical biomarkers of GEICAM/9906 samples. This work was supported by funds from the National Cancer Institute (NCI) Strategic Partnering to Evaluate Cancer Signatures Grant U01 CA114722, the NCI Breast SPORE program (P50-CA58223-09A1), and the Breast Cancer Research Foundation. Miguel Martin and Emilio Alba were supported by FEDER (RETICC-RD12/0036/0076). This work was presented in part as an oral communication at the 2012 American Society of Clinical Oncology annual meeting (abstract 1008).

Author Contributions

Conception/Design: Maggie C.U. Cheang, Torsten O. Nielsen, Mark N. Levine, Angelo Di Leo, Lisa A. Carey

Provision of study material or patients: Miguel Martin, Torsten O. Nielsen, David Voduc, Alvaro Rodriguez-Lescure, Amparo Ruiz, Stephen Chia, Emilio Alba, Eva Carrasco, Rosalia Caballero, Dongsheng Tu, Mark N. Levine, Vivien H. Bramwell

Collection and/or assembly of data: Maggie C.U. Cheang, Miguel Martin, Torsten O. Nielsen, Alexi Prat, David Voduc, Alvaro Rodriguez-Lescure, Amparo Ruiz, Stephen Chia, Lois Shepherd, Manuel Ruiz-Borrego, Lourdes Calvo, Emilio Alba, Eva Carrasco, Rosalia Caballero, Dongsheng Tu, Kathleen I. Pritchard, Mark N. Levine, Vivien H. Bramwell, Joel Parker, Philip S. Bernard, Matthew J. Ellis, Charles M. Perou, Angelo Di Leo, Lisa A. Carey

Final approval of manuscript: Maggie C.U. Cheang, Miguel Martin, Torsten O. Nielsen, Alexi Prat, David Voduc, Alvaro Rodriguez-Lescure, Amparo Ruiz, Stephen Chia, Lois Shepherd, Manuel Ruiz-Borrego, Lourdes Calvo, Emilio Alba, Eva Carrasco, Rosalia Caballero, Dongsheng Tu, Kathleen I. Pritchard, Mark N. Levine, Vivien H. Bramwell, Joel Parker, Philip S. Bernard, Matthew J. Ellis, Charles M. Perou, Angelo Di Leo, Lisa A. Carey

Disclosure

Maggie C.U. Cheang: PAM50 Bioclassifier Patent (IP); Miguel Martin: Roche, Genentech, Novartis, AstraZeneca, Genomic Health (C/A), Torsten O. Nielsen: NanoString Technologies (C/A, RF), Bioclassifier, LLC (OI), PAM50 (IP); Alexei Prat: NanoString Technologies (C/A); Stephen Chia: Hoffmann LaRoche, Novartis (RF), Hoffmann LaRoche, Novartis, Genomic Health (H); Kathleen I. Pritchard: Novartis, Roche, AstraZeneca, GlaxoSmithKline, Pfizer (C/A), Novartis, AstraZeneca, Roche (RF), Novartis (H); Joel Parker: NanoString Technologies (C/A), 50-gene subtype test (IP); Philip S. Bernard: Bioclassifier, LLC (C/A, OI), Bioclassifier, PAM50 assay (IP); Matthew J. Ellis: Pfizer, Novartis, AstraZeneca (C/A), Bioclassifier/NanoString (E, OI); Charles M. Perou: Bioclassifier, LLC and University Genomics (C/A, E, OI), NanoString Technologies, Synta, Biotheranostics, Novartis, Lilly, Pfizer (C/A).

Conflict of Interest: (RF) Research funding; (C/A) Consulting/advisory relationship; (O1) Ownership interests; (IP) Intellectual property rights/ inventor/patent holder; (SAB) Scientific advisory board

Conclusion

Quantitative hormone receptor expression can help identify molecular populations of interest. Borderline-expressing tumors are heterogeneous and do not fit well into molecular categories. While endocrine sensitivity in these tumors is not known, nearly half were luminal subtypes, supporting both current recommendations for endocrine therapy use as well as efforts to better identify sensitive tumors.

References

Cheang, Martin, Nielsen et al.

30. Carey LA, Barry WT, Pitcher BN et al. Gene expression signatures in pre- and post-therapy (Rx) specimens from CALGB 40601 (Alliance), a neo-adjuvant phase III trial of weekly paclitaxel and trastuzumab with or without lapatinib for HER2-positive breast cancer (BrCa). J Clin Oncol 2014;32(suppl):506a.

See http://www.TheOncologist.com for supplemental material available online.