Associations of obesity and circulating insulin and glucose with breast cancer risk: a Mendelian randomization analysis

Xiang Shu,1 Lang Wu,1 Nikhil K Khankari,1 Xiao-Ou Shu 2,1 Thomas J Wang,2 Kyriaki Michailidou,3,4 Manjeet K Bolla,3 Qin Wang,3 Joe Dennis,3 Roger L Milne,5,6 Marjanka K Schmidt,7,8 Paul DP Pharoah,3,9 Irene L Andrulis,10,11 David J Hunter,12,13 Jacques Simard,14 Douglas F Easton3,9 and Wei Zheng 1*; 1*

Breast Cancer Association Consortium

1Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 2Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 3Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK, 4Department of Electron Microscopy/Molecular Pathology, Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 5Cancer Epidemiology & Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia, 6Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia, 7Division of Molecular Pathology, 8Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands, 9Department of Oncology, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK, 10Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, Canada, 11Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada, 12Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 13Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA and 14Genomics Center, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec City, QC, Canada

*Corresponding author. Vanderbilt Epidemiology Center and Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Avenue, 8th Floor, Nashville, TN 37203-1738, USA. E-mail: wei.zheng@vanderbilt.edu

Abstract

Background: In addition to the established association between general obesity and breast cancer risk, central obesity and circulating fasting insulin and glucose have been linked to the development of this common malignancy. Findings from previous studies, however, have been inconsistent, and the nature of the associations is unclear.

Methods: We conducted Mendelian randomization analyses to evaluate the association of breast cancer risk, using genetic instruments, with fasting insulin, fasting glucose, 2-h glucose, body mass index (BMI) and BMI-adjusted waist-hip-ratio (WHR\textsubscript{adj BMI}). We first
confirmed the association of these instruments with type 2 diabetes risk in a large diabetes genome-wide association study consortium. We then investigated their associations with breast cancer risk using individual-level data obtained from 98,842 cases and 83,464 controls of European descent in the Breast Cancer Association Consortium.

Results: All sets of instruments were associated with risk of type 2 diabetes. Associations with breast cancer risk were found for genetically predicted fasting insulin \((OR = 1.71 \text{ per standard deviation (SD) increase, 95\% confidence interval (CI) = 1.26-2.31, } p = 5.09 \times 10^{-4}) \), 2-h glucose \((OR = 1.80 \text{ per SD increase, 95\% CI = 1.30-2.49, } p = 4.02 \times 10^{-4}) \), BMI \((OR = 0.70 \text{ per 5-unit increase, 95\% CI = 0.65-0.76, } p = 5.05 \times 10^{-19}) \) and WHR\(_{\text{adj BMI}}\) \((OR = 0.85, 95\% \text{ CI = 0.79-0.91, } p = 9.22 \times 10^{-6}) \). Stratified analyses showed that genetically predicted fasting insulin was more closely related to risk of estrogen-receptor [ER]-positive cancer, whereas the associations with instruments of 2-h glucose, BMI and WHR\(_{\text{adj BMI}}\) were consistent regardless of age, menopausal status, estrogen receptor status and family history of breast cancer.

Conclusions: We confirmed the previously reported inverse association of genetically predicted BMI with breast cancer risk, and showed a positive association of genetically predicted fasting insulin and 2-h glucose and an inverse association of WHR\(_{\text{adj BMI}}\) with breast cancer risk. Our study suggests that genetically determined obesity and glucose/insulin-related traits have an important role in the aetiology of breast cancer.

Key words: Breast cancer, insulin, glucose, obesity, genetics, Mendelian randomization analysis

Introduction

General and central obesity have been linked to breast cancer risk in previous studies.\(^1,2\) Body mass index (BMI) and waist-hip-ratio (WHR) are commonly used to measure general and central obesity, respectively. Obesity, particularly central obesity, is a major risk factor for insulin resistance and type 2 diabetes, which are often characterized by elevated fasting insulin and glucose as well as impaired glucose tolerance (usually measured by blood glucose level 2 h after oral glucose challenge).\(^3\) Previous studies have linked fasting insulin and glucose levels to increased risks of multiple cancers.\(^4,5\) Proposed mechanisms for these associations include cancer-promoting effects mediated by insulin and insulin-like growth factor (IGF) signalling pathways.\(^7\) However, the relationship between these biomarkers and breast cancer remains controversial and findings from epidemiological studies are inconsistent.\(^8,9\) Concerns regarding the validity of these observational study findings include potential selection biases, reverse causation, confounding effects, small sample size and differences in assays used to measure the biomarkers of interest.

Mendelian randomization analysis has been used to evaluate potential causal relationships between exposures and disease.\(^10,11\) Genetic variants are used as instrumental variables in the analysis. Random assortment of alleles at the time of gamete formation results in a random assignment of exposures that are related to an allele (or a set of alleles). Thus, Mendelian randomization analyses may reduce potential biases that would afflict conventional...
observed in Mendelian randomization studies. In the current study, we performed Mendelian randomization analyses to assess associations of obesity (i.e. BMI and WHR) and glucose/insulin-related traits (i.e. fasting glucose, 2-h glucose and fasting insulin) with breast cancer risk, using data from the Breast Cancer Association Consortium (BCAC).

Methods

Study population

Included in this analysis are 182,306 participants of European ancestry, whose samples were genotyped using custom Illumina iSelect genotyping arrays: OncoArray (56,762 cases and 43,207 controls) or iCOGS array (42,080 cases and 40,257 controls). Institutional review boards of all involved institutions approved the studies. Selected characteristics of the two datasets are presented in Supplementary Table 1, available as Supplementary data at IJE online. Details of the genotyping protocols in the BCAC are described elsewhere (iCOGS: http://cge.medschl.cam.ac.uk/research/consortia/icogs/; OncoArray: https://epi.grants.cancer.gov/oncoarray/). Genotyping data were imputed using the program IMPUTE2 with the 1000 Genomes Project Phase III integrated variant set as the reference panel. Single nucleotide polymorphisms (SNPs) with low imputation quality (imputation r² < 0.5) were excluded. Top principal components (PCs) were included as covariates in regression analysis to address potential population substructure (iCOGS: top eight PCs; OncoArray: top 15 PCs).

Selection of SNPs associated with glucose/insulin-related traits

In December 2016, we searched the National Human Genome Research Institute-European Bioinformatics Institute Catalog of Published Genome-Wide Association Studies and the literature for SNPs associated with the following traits: levels of 2-h glucose (2hrGlu), fasting glucose (FG), fasting insulin (FI), BMI and waist-hip-ratio with adjustment of BMI (WHRadj BMI).15–19 SNPs associated with any of these traits at the genome-wide significance level (P < 5 × 10⁻⁸) in populations of European ancestry were included. For each GWAS-identified locus, a representative SNP with the lowest P-value in the original GWAS publication was selected (linkage disequilibrium r² < 0.1, based on 1000 Genome Phase III CEU data).

Construction of instrumental variables

Weighted polygenic scores for each trait (i.e. wPRS-2hrGlu, wPRS-FG, wPRS-FI, wPRS-BMI and wPRS-WHRadj BMI) were constructed following the formula: wPRS-trait = ∑ βiGX·SNPi, where βiGX is the beta coefficient of the i⁵ SNP for the trait of interest from the published GWAS (Supplementary Table 2, available as Supplementary data at IJE online). SNP is the imputed dosage of the effect allele in BCAC data (range: 0 to 2). To reduce potential pleiotropic effects, we excluded BMI- and WHRadj BMI-associated SNPs from instruments of 2hrGlu, fasting glucose and insulin (r² < 0.8), and vice versa. The pleiotropic SNPs associated with more than one trait are presented in Supplementary Table 2, available as Supplementary data at IJE online. The F-statistic was taken to indicate whether an instrumental variable was well-powered for Mendelian randomization analysis, with 10 being a commonly used threshold. Variance explained (%) and F statistics for a specific trait were calculated following the formula: ∑ 2·β²GX·f·(1-f)/σ² [var(X)] = 100 and R² = (n-1-k)/R², respectively, where: R² is percentage of variance explained by used SNPs; f is the frequency of the effect allele reported by GWAS for the trait; var(X) is the variance of trait, see below; n is the sample size of BCAC data; and k is the number of SNPs used in the instrument.

For 2-h glucose, fasting glucose and insulin, βiGX were further transformed to represent 1 standard deviation (SD) increase with the unit in the original GWAS (2-h glucose: 1 SD = 2 mmol/L, variance = 4; fasting glucose: 1 SD = 0.65 mmol/L, variance = 0.42; fasting insulin: 1 SD = 0.60 ln[pmol/L], variance = 0.36). The F-statistic was by the formula: βSD = βGX·f·[σ² (SNP)/(1-f)]/0.5·SD. wPRS-BMI and wPRS-WHRadj BMI represented the adjusted 1-SD increase of transformed BMI and WHRadj BMI, as the original GWAS performed the inverse normal transformation for both phenotypes. We further scaled wPRS-BMI to be equivalent to five units of BMI by performing a linear regression among controls in our dataset: observed BMI ~ wPRS-BMI + error. Then we calculated the transformed BMI as BMI_wPRS = β0 + β1·(wPRS-BMI), where β0 and β1 are slope and coefficient from the linear regression model mentioned above, respectively.

Statistical analysis

Given an established association between impaired glucose/insulin traits and type 2 diabetes, an association between constructed instruments and risk of type 2 diabetes is to be expected. We used summary statistics from the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium and conducted a Mendelian randomization analysis of our traits using the inverse-variance-weighted two-sample method. The Mendelian randomization estimate and standard error were calculated as ∑ β²GX·βGY·σ²GY/[(∑ β²GX·σ²GY)² and 1/(∑ β²GX·σ²GY)]⁰.⁵, respectively. GY represents the association between a SNP...
and type 2 diabetes risk; thus \(\beta_{\text{i}, \text{GY}} \) and \(\sigma_{\text{i}, \text{GY}} \) are beta coefficient and standard error, respectively. The \(P \)-value was based on Student’s \(t \) distribution, where the degrees of freedom were determined by the number of SNPs included in the instrument for the trait of interest. We calculated Pearson’s correlations between each pair of wPRSs in the control data before and after removal of pleiotropic SNPs. Egger’s regression, as described in Bowden et al.,25 was performed to detect potential pleiotropy of our instruments. We also included all instruments in the same model to evaluate possible independent associations of each instrument with breast cancer risk.

Associations of wPRSs with breast cancer risk were evaluated separately in the iCOGs and OncoArray datasets by treating these scores as continuous variables. A logistic regression was performed with age at interview/diagnosis, study site/country and PCs as covariates. The results were then combined using meta-analyses in META\textsc{al} with a fixed-effects model.26 We performed additional analyses adjusting for certain known breast cancer risk factors listed in Supplementary Table 1, available as Supplementary data at IJE online. Finally, we conducted subanalyses by estrogen receptor (ER) status, age at interview/diagnosis (<50 versus \(\geq 50 \)), menopausal status at interview/breast cancer diagnosis and family history of breast cancer. All statistical analyses were conducted using R statistical software (version 3.1.2).

Results

Approximately 90\% of cases included in this study were diagnosed at age 40 or above. A total of 278 SNPs were selected to construct the instruments, for which the number of SNPs for each trait ranged from 4 to 166 (Table 1). The variance of each trait explained by its associated variants ranged from 0.23\% for 2-h glucose to 2.89\% for BMI (Table 1).

Using data from DIAGRAM, we demonstrated that all genetic instruments were associated with risk of type 2 diabetes in the direction that would be expected (Table 2). The strongest association was observed for the genetic instrument for fasting glucose (OR = 6.37, \(P = 5.77 \times 10^{-16} \) and OR = 4.32, \(P = 1.12 \times 10^{-11} \) before and after the exclusion of pleiotropic SNPs, respectively).

Removing pleiotropic SNPs did not appreciably change the associations of instruments with breast cancer risk (Table 3). A 1-SD increase in genetically predicted 2-h glucose levels was associated with an 80\% increased risk of breast cancer (OR = 1.80, 95\% CI = 1.30-2.49, \(p = 4.02 \text{ (Table 3).} \)

Table 1. Summary of instrument variables for obesity and glucose/insulin-related traits used in the current study

<table>
<thead>
<tr>
<th>Traits</th>
<th>All SNPs</th>
<th>After exclusion of pleiotropic SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No. of variants</td>
<td>Variance explained (%)</td>
</tr>
<tr>
<td>2-h glucose</td>
<td>9</td>
<td>0.56</td>
</tr>
<tr>
<td>Fasting glucose</td>
<td>36</td>
<td>2.42</td>
</tr>
<tr>
<td>Fasting insulin</td>
<td>18</td>
<td>0.59</td>
</tr>
<tr>
<td>BMI</td>
<td>166</td>
<td>2.89</td>
</tr>
<tr>
<td>WHR\textsubscript{adj BMI}</td>
<td>54</td>
<td>1.96</td>
</tr>
</tbody>
</table>

aExcluding SNPs (or their correlated SNPs with \(r^2 > 0.8 \) associated with fasting glucose, fasting insulin, BMI and WHR\textsubscript{adj BMI}.
bExcluding SNPs (or their correlated SNPs with \(r^2 > 0.8 \) associated with levels of 2-h glucose, fasting insulin, BMI and WHR\textsubscript{adj BMI}.
cExcluding SNPs (or their correlated SNPs with \(r^2 > 0.8 \) associated with levels of 2-h glucose, fasting glucose, BMI and WHR\textsubscript{adj BMI}.
dExcluding SNPs (or their correlated SNPs with \(r^2 > 0.8 \) associated with levels of 2-h glucose, fasting glucose and fasting insulin.

Table 2. Associations of obesity and glucose/insulin-related traits with type 2 diabetes using data from DIAGRAM: results from Mendelian randomization analysis

<table>
<thead>
<tr>
<th>Traits</th>
<th>All SNPs</th>
<th>After exclusion of pleiotropic SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV</td>
<td>OR (95% CI)</td>
</tr>
<tr>
<td>2-h glucosea</td>
<td>9</td>
<td>12.0 (6.90–21.0)</td>
</tr>
<tr>
<td>Fasting glucosed</td>
<td>36</td>
<td>6.37 (4.87–8.32)</td>
</tr>
<tr>
<td>Fasting insulinc</td>
<td>18</td>
<td>1.92 (1.10–3.35)</td>
</tr>
<tr>
<td>BMI</td>
<td>132</td>
<td>1.92 (1.64–2.25)</td>
</tr>
<tr>
<td>WHR\textsubscript{adj BMI}</td>
<td>53</td>
<td>1.87 (1.53–2.29)</td>
</tr>
</tbody>
</table>

aORs calculated based on 1-SD increase in levels of genetically predicted 2-h glucose (2 mmol/L,22), fasting glucose (0.65 mmol/L,17) and fasting insulin (0.60 ln[pmol/L]).17
Table 3. Associations of genetically predicted obesity and glucose/insulin-related traits with breast cancer risk: results from Mendelian randomization analysis

<table>
<thead>
<tr>
<th>Traits</th>
<th>All SNPs</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
<th>(P_{het})</th>
<th>After exclusion of pleiotropic SNPs</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
<th>(P_{het})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-h glucose(^a)</td>
<td>1.50</td>
<td>1.21–1.86</td>
<td>2.13 (10^{-4})</td>
<td>0.608</td>
<td></td>
<td>1.80</td>
<td>1.30–2.49</td>
<td>4.02 (10^{-4})</td>
<td>0.566</td>
<td></td>
</tr>
<tr>
<td>Fasting glucose(^a)</td>
<td>1.06</td>
<td>0.95–1.17</td>
<td>0.291</td>
<td>0.543</td>
<td></td>
<td>1.02</td>
<td>0.91–1.14</td>
<td>0.749</td>
<td>0.357</td>
<td></td>
</tr>
<tr>
<td>Fasting insulin(^a)</td>
<td>1.16</td>
<td>0.96–1.41</td>
<td>0.128</td>
<td>0.939</td>
<td></td>
<td>1.71</td>
<td>1.26–2.31</td>
<td>5.09 (10^{-4})</td>
<td>0.442</td>
<td></td>
</tr>
<tr>
<td>BMI per five-unit(^b)</td>
<td>0.70</td>
<td>0.65–0.76</td>
<td>5.25 (10^{-22})</td>
<td>0.042</td>
<td></td>
<td>0.70</td>
<td>0.66–0.77</td>
<td>5.05 (10^{-19})</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>BMI per SD(^a)</td>
<td>0.76</td>
<td>0.72–0.80</td>
<td>5.25 (10^{-22})</td>
<td>0.042</td>
<td></td>
<td>0.77</td>
<td>0.73–0.82</td>
<td>5.05 (10^{-19})</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td>WHR(_{adj}) BMI(^a)</td>
<td>0.85</td>
<td>0.79–0.91</td>
<td>4.48 (10^{-6})</td>
<td>0.132</td>
<td></td>
<td>0.85</td>
<td>0.79–0.91</td>
<td>9.22 (10^{-6})</td>
<td>0.152</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)ORs calculated based on 1-SD increase in levels of genetically predicted 2-h glucose (2 mmol/L), fasting glucose (0.65 mmol/L), fasting insulin (0.60 ln[pmol/L]), BMI and WHR\(_{adj}\) BMI.

\(^b\)ORs calculated based on 5-unit increase of genetically predicted BMI (see Methods).

\(× 10^{-4}\). An inverse association was observed for both genetically predicted BMI and WHR\(_{adj}\) BMI (per five units of BMI increase: OR = 0.70, 95% CI = 0.66–0.77, \(P = 5.05 \times 10^{-4}\); per unit increase of genetic risk score for WHR\(_{adj}\) BMI: OR = 0.85, 95% CI = 0.79–0.91, \(P = 9.22 \times 10^{-4}\)). The association of breast cancer risk with genetically predicted fasting insulin became significant after excluding pleiotropic SNPs (OR = 1.71, 95% CI = 1.26–2.31, \(P = 5.09 \times 10^{-4}\)). No association was observed for genetically predicted fasting glucose. Results of iCOGS and OncoArray are shown separately in Supplementary Table 3, available as Supplementary data at IJE online.

Genetically predicted fasting insulin was correlated with both genetically predicted 2-h glucose and WHR\(_{adj}\) BMI (Supplementary Table 4, available as Supplementary data at IJE online). Exclusion of pleiotropic SNPs attenuated these correlations. Mutual adjustment of all instruments did not materially change the observed associations with breast cancer risk described above (Supplementary Table 5, available as Supplementary data at IJE online). We evaluated the associations of genetically predicted obesity and glucose/insulin-related traits with traditional risk factors for breast cancer and found that genetically predicted fasting insulin and WHR\(_{adj}\) BMI were associated with BMI in controls. Further, genetically predicted BMI was correlated with age at menarche, age at first live birth and breastfeeding history (Supplementary Table 6, available as Supplementary data at IJE online). Adjusting for these covariates did not materially change the observed associations of genetically predicted fasting insulin, BMI and WHR\(_{adj}\) BMI with breast cancer risk (Supplementary Table 7, available as Supplementary data at IJE online). Finally, using Egger’s regression, we found that the intercept in the model was noticeable for genetically predicted 2-h glucose, BMI and WHR\(_{adj}\) BMI, indicating a strong pleiotropic effect for these instruments (\(P < 0.005\) for \(\beta_0\), Supplementary Table 8, available as Supplementary data at IJE online).\(^25\) No apparent pleiotropy was found for genetically predicted fasting insulin. The Mendelian randomization estimates from Egger’s regression remained significant after accounting for detected pleiotropy for genetically predicted BMI and WHR\(_{adj}\) BMI (Supplementary Table 8, available as Supplementary data at IJE online).

Stratified analysis was performed by age, menopausal status, ER status and family history of breast cancer. Genetically predicted 2-h glucose, BMI and WHR\(_{adj}\) BMI were consistently associated with breast cancer across all strata (Figure 1A, C and D, \(P_{het} > 0.05\), exclusion of pleiotropic SNPs). The association with genetically predicted fasting insulin was restricted to ER(+) cancer (Figure 1B, \(P_{het} 0.007\), exclusion of pleiotropic SNPs). The results of stratified analysis are shown for other sets of instrumental variables in Supplementary Figures 1 (inclusion of pleiotropic SNPs) and 2 (fasting glucose, exclusion of pleiotropic SNPs), available as Supplementary data at IJE online.

Discussion

In this large study, we found that genetically predicted obesity, 2-h glucose and fasting insulin were associated with breast cancer risk. Measured BMI has been well established to be positively associated with breast cancer risk in postmenopausal women but inversely related to the risk in premenopausal women. Results from epidemiological studies investigating the association of breast cancer risk with WHR, fasting insulin and glucose have been inconsistent. Traditional epidemiological studies are prone to biases, including confounding, selection biases, recall biases and reverse causality. Mendelian randomization analyses take advantage of the random assignment of
genetic alleles during gamete formation to minimize the biases commonly encountered in traditional epidemiological studies. When instrumental variables are not associated with any potential confounders and are not linked to the outcome via any alternative pathway, Mendelian randomization analysis using such instrumental variables resemble randomized clinical trials, and thus could provide strong results for causal inference for the exposure of interest.\(^{10}\)

We found that the risk of breast cancer increased approximately 70% for each 1-SD increase of genetically predicted fasting insulin levels. Previous epidemiological studies were unable to reach a conclusion regarding the association between fasting insulin and breast cancer risk. A meta-analysis reported a null association for fasting insulin.\(^{8}\) However the \(I^2\), an indicator of heterogeneity across studies, was considerable. Our results provide strong evidence to support a positive association. Insulin is an important growth factor with cancer-promoting features such as stimulating cell mitosis and migration and inhibiting apoptosis. Its mitogenic effects involve the activation of Ras and the mitogen-activated protein kinase pathway,\(^{27}\) of which the role in cancer development has been recognized.\(^{28}\) Further, insulin may inhibit the production of sex hormone-binding globulin and lead to elevated bioavailable estrogen levels.\(^{29}\) It also has been shown that knockdown of insulin and IGF-1 receptors inhibits hormone-dependent growth of ER\((+)^{10}\) breast cancer cells.\(^{30}\) This may explain the association of fasting insulin with ER\((+)^{10}\) breast cancer observed in this study.

Previous epidemiological studies have suggested that fasting glucose may be a risk factor for breast cancer, but few have assessed 2-h glucose levels, as the latter are difficult to investigate in large prospective cohort studies. Overall, a meta-analysis of prospective studies showed no strong evidence to support an association of fasting glucose levels and risk of breast cancer in non-diabetic women.\(^{9}\) In the current study, we found a positive association with breast cancer for genetically predicted 2-h glucose levels but not for fasting glucose. Although fasting glucose and 2-h glucose are closely correlated,\(^{31}\) they represent different biological processes. The genetically determined fasting glucose levels primarily reflect the glycogenolysis activity in liver and hepatic insulin sensitivity.\(^{32}\) On the other hand, the levels of post-challenge glucose are mainly determined by the amount and pace of insulin released into blood stream in response to the challenge as well as by the

Figure 1. Associations of genetically predicted obesity and levels of circulating glucose and insulin with overall breast cancer risk: stratified analysis. The \(P_{\text{heterogeneity}}\) was obtained from heterogeneity test across strata.
glucose uptake in skeletal muscle cells (in other words, it primarily reflects beta cell function and skeletal muscle insulin sensitivity). The reasons why genetically predicted 2-h glucose, but not fasting glucose, is associated with increased risk of breast cancer are not clear. One animal study has provided evidence that transgenic mice with inactivated insulin and IGF-1 receptors in skeletal muscles (impaired skeletal muscle insulin sensitivity) can manifest hyperinsulinaemia and an accelerated development of breast cancer. Since genetically predicted 2-h glucose is correlated with instruments for other traits, we cannot completely rule out the possibility that the association of 2-h glucose may be mediated by other insulin-related traits; even these traits were carefully adjusted, and pleiotropic SNPs were excluded in our analyses.

We reported previously that genetically predicted BMI was inversely associated with breast cancer risk in both pre- and postmenopausal women. We have now confirmed this finding with a much larger sample size and more BMI-associated SNPs. Whereas our finding for premenopausal breast cancer risk is consistent with previous observational studies, the inverse association observed in our study between genetically predicted BMI and postmenopausal breast cancer risk contradicts previous findings based on measured BMI. Multiple lines of evidence suggest that early life body size may be inversely associated with both premenopausal and postmenopausal breast cancer risk. It has been speculated that reduced serum estradiol and progesterone levels, due to an increased frequency of anovulation, play a role. In addition, the association is further supported by the observation that early life fatness was inversely correlated with IGF-1 levels measured in later adulthood. We hypothesize that genetically predicted BMI may be more closely correlated to early life body weight, and obesity determined using measured BMI later in life may be more closely related to environmental and lifestyle factors that are associated with breast cancer risk. Indeed, one previous study found that a BMI-genetic score was positively associated with weight gain before reaching middle age but inversely associated with weight gain after reaching middle age. If the hypothesis is correct, our study may provide additional support for preventing weight gain in later life to reduce the risk of breast cancer.

Results from previous studies regarding the association of WHR with breast cancer risk have been inconsistent. Although several previous studies reported that measured WHR was associated with breast cancer risk, we recently found that this association was substantially attenuated after adjusting for BMI using data from a large prospective cohort study conducted among Chinese women. In the current study, we observed an inverse association between genetically predicted WHRadjBMI and breast cancer risk in both pre- and postmenopausal women. This finding was unexpected, given the close association of measured WHR with type 2 diabetes. As discussed previously for the BMI findings, we hypothesize that genetically predicted WHRadjBMI may reflect visceral adipose tissue level in early life, whereas measured WHR in late adulthood may reflect accumulation of visceral fats later in life. Additional research is needed to understand the inter-relationship of genetically predicted WHR, measured WHR and breast cancer risk.

We showed that genetically predicted obesity and circulating insulin and glucose levels were positively correlated with risk of type 2 diabetes. Epidemiological studies have shown that a previous diagnosis of type 2 diabetes was related to an elevated risk of breast cancer risk, although the association was weak to moderate. However, in a previous study, we found a null association between a polygenic risk score for type 2 diabetes and breast cancer risk. It is possible that lifestyle changes after diabetes diagnosis and/or diabetes treatment may have confounded this association. Given the significant association we found in this study for breast cancer risk with genetically predicted fasting insulin and 2-h glucose, two factors that are strongly associated with type 2 diabetes risk, we suggest that type 2 diabetes may be associated with breast cancer risk.

The sample size of our study is very large, providing us sufficient statistical power for Mendelian randomization analyses of multiple obesity, glucose/insulin-related traits and breast cancer risk. Our ability to perform Mendelian randomization analysis is limited by the genetic variants identified to date in GWAS, and the variance explained by these genetic variants for some traits is small. We used 10 instruments in our main analysis, which could lead to false-positive findings due to multiple comparisons. However, the associations reported in this study for 2-h glucose, fasting insulin, BMI and WHRadjBMI were robust, reaching the stringent Bonferroni corrected significance level ($P < 0.05/10 = 0.005$). Pleiotropy was found for the associations of obesity, but it is not likely that the observed associations can be primarily explained by pleiotropic effects.

In summary, this study provided new evidence that genetically predicted fasting insulin, 2-h glucose, BMI and WHRadjBMI are associated with breast cancer risk in women. Further research into the complex association of genetics, obesity, glucose/insulin-related traits and breast cancer risk will help to improve the understanding of underlying biological mechanisms for the associations observed in this study and may provide tools to reduce breast cancer risk.

Supplementary Data

Supplementary data are available at *IJE* online.
Funding
This work at Vanderbilt University Medical Center was supported in part by the National Cancer Institute at the National Institutes of Health [grant numbers R01CA158473, R01CA148677], as well as funds from Anne Potter Wilson endowment to W.Z. Genotyping of the OncoArray was principally funded from three sources: the PERSPECTIVE project, funded from the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the ministère de l’Économie, de la Science et de l’Innovation du Québec through Genome Québec, and the Quebec Breast Cancer Foundation; the National Cancer Institute Genetic Associations and Mechanisms in Oncology (GAME-ON) initiative and Discovery, Biology and Risk of Inherited Variants in Breast Cancer (DRIVE) project [grant numbers U19CA148065, X01HG007492]; and Cancer Research UK [grant numbers C1287/ A10118, C1287/A16563]. BCAC is funded by Cancer Research UK [grant number C1287/A16563], the European Community’s Seventh Framework Programme [grant number 223175 (HEALTH-F2-2009-223175) (COGS)] and by the European Union’s Horizon 2020 Research and Innovation Programme [grant agreements 633784 (B-CAST) and 634935 (BRIDGES)]. Genotyping of the iCOGS array was funded by the European Union [HEALTH-F2-2009-223175], Cancer Research UK [C1287/A10710], the Canadian Institutes of Health Research for the ‘CIHR Team in Familial Risks of Breast Cancer’ program, and the Ministry of Economic Development, Innovation and Export Trade of Quebec [PSR-SHRI-701]. Combining the GWAS data was supported in part by the National Institute of Health (NIH) Cancer Post-Cancer GWAS initiative [grant number U19CA148065; DRIVE, part of the GAME-ON initiative]. For a full description of funding and acknowledgments, see Supplementary Note, available as Supplementary data at IJE online. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Acknowledgements
The authors thank Jirong Long, Wanqing Wen, Yingchun Lu and Kim Kreth of Vanderbilt Epidemiology Center for their help with this study. The authors also wish to thank all the individuals who took part in these studies and all the researchers, clinicians, technicians and administrative staff who have enabled this work to be carried out.

1Division of Epidemiology, Department of Medicine, Vanderbilt Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA, 2Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA, 3Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK, 4Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 5Centre of Epidemiology & Intelligence Division, Cancer Research UK, 6Division of Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus, 7Division of Psychosocial
Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK, 81Manchester Centre for Genomic Medicine, St. Mary’s Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK, 82David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, USA, 83Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh Medical School, Edinburgh, UK, 84Cancer Research UK Edinburgh Centre, Edinburgh, UK, 85The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK, 86Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark, 87School of Public Health, Curtin University, Perth, Western Australia, Australia, 88Genomic Medicine Group, Galician Foundation of Genomic Medicine, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, Santiago de Compostela, Spain, 89Moores Cancer Center, University of California San Diego, La Jolla, CA, USA, 90Department of Medicine, McGill University, Montréal, QC, Canada, 91Division of Clinical Epidemiology, Royal Victoria Hospital, McGill University, Montréal, QC, Canada, 92Department of Dermatology, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA, 93Cancer & Environment Group, Center for Research in Epidemiology and Population Health (CESP), INSERM, University Paris-Sud, University Paris-Saclay, Villejuif, France, 94Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne, Cologne, Germany, 95Center for Integrated Oncology (CIO), University Hospital of Cologne, Cologne, Germany, 96Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany, 97Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 98Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden, 99Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA, 100Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany, 101Cancer Genomics Research Laboratory (CGR), Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Rockville, MD, USA, 102Family Cancer Clinic, The Netherlands Cancer Institute - Antoni van Leeuwenhoek hospital, Amsterdam, The Netherlands, 103Department of Medical Oncology, Family Cancer Clinic, Erasmus MC Cancer Institute, Rotterdam, The Netherlands, 104Institute of Cancer studies, University of Manchester, Manchester, UK, 105Department of Genetics and Pathology, Pomeranian Medical University, Szczecin, Poland, 106Department of Gynecology and Obstetrics, University Hospital Ulm, Ulm, Germany, 107Department of Epidemiology, Cancer Prevention Institute of California, Fremont, CA, USA, 108Department of Health Research and Policy - Epidemiology, Stanford University School of Medicine, Stanford, CA, USA, 109Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA, 110School of Medicine, National University of Ireland, Galway, Ireland, 111Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, Russia, 112Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland, 113Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, Kuopio, Finland, 114Imaging Center, Department of Clinical Pathology, Kuopio University Hospital, Kuopio, Finland, 115Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, 116VIB Center for Cancer Biology, VIB, Leuven, Belgium, 117Laboratory for Translational Genetics, Department of Human Genetics, University of Leuven, Leuven, Belgium, 118Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA, 119Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA, 120Department of Cancer Epidemiology and Prevention, M. Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland, 121German Breast Group, GmbH, Neu Isenburg, Germany, 122Southampton Clinical Trials Unit, Faculty of Medicine, University of Southampton, Southampton, UK, 123Research Centre for Genetic Engineering and Biotechnology “Georgi D. Efremov”, Macedonian Academy of Sciences and Arts, Skopje, Republic of Macedonia, 124Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori (INT), Milan, Italy, 125Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA, 126Department of Oncology - Pathology, Karolinska Institutet, Stockholm, Sweden, 127Department of Medical Oncology, University Hospital of Heraklion, Heraklion, Greece, 128Radiation Oncology, Hospital Meixoeiro-XXI de Vigo, Vigo, Spain, 129Division of Gynaecology and Obstetrics, Technische Universität München, Munich, Germany, 130Gynaecological Cancer Research Centre, Women’s Cancer, Institute for Women’s Health, University College London, London, UK, 131Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada, 132Laboratory Medicine Program, University Health Network, Toronto, ON, Canada, 133Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA, USA, 134Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland, 135Leuven Multidisciplinary Breast Center, Department of Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium, 136Center for Clinical Cancer Genetics and Global Health, The University of Chicago, Chicago, IL, USA, 137Department of Epidemiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 138Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 139Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit, Biocenter Oulu, University of Oulu, Oulu, Finland, 140Laboratory of Cancer Genetics and Tumor Biology, Northern Finland Laboratory Centre Oulu, Oulu, Finland, 141Department of Gynecology and Obstetrics, Ludwig-Maximilians University of Munich, Munich, Germany, 142Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Di Ricovero e Cura a Carattere Scientifico (INT), Milan, Italy, 143Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK, 144Clatit National Cancer Control Center, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel, 145Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain, 146Hereditary Cancer Clinic, University Hospital of Heraklion, Heraklion, Greece, 147Epidemiology Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA, 148Research Oncology, Guy’s Hospital, King’s College London, London, UK.
College London, London, UK, 149 National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany, 150 Division of Molecular Medicine, Pathology North, John Hunter Hospital, Newcastle, New South Wales, Australia, 151 Discipline of Medical Genetics, School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia, 152 Department of Pathology, The University of Melbourne, Melbourne, Victoria, Australia, 153 Cancer Control Research, BC Cancer Agency, Vancouver, BC, Canada, 154 School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada, 155 The Curtin UWA Centre for Genetic Origins of Health and Disease, Curtin University and University of Western Australia, Perth, Western Australia, Australia, 156 Division of Breast Cancer Research, The Institute of Cancer Research, London, UK, 157 Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA, 158 Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA, 159 McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada, 160 Department of Cancer Epidemiology, Clinical Cancer Registry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, 161 Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands, 162 Institute of Human Genetics, Pontificia Universidad Javeriana, Bogota, Colombia, 163 Department of Gynecology and Obstetrics, Helios Clinics Berlin-Buch, Berlin, Germany, 164 Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands, 165 Biostatistics Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA and 166 Department of Medicine, Institute for Human Genetics, UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA

Conflict of interest: None declared.

References