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abstract

PURPOSE CALGB 40601 assessed whether dual versus single human epidermal growth factor receptor 2
(HER2) –targeting drugs added to neoadjuvant chemotherapy increased pathologic complete response (pCR).
Here, we report relapse-free survival (RFS), overall survival (OS), and gene expression signatures that predict
pCR and survival.

PATIENTS AND METHODS Three hundred five women with untreated stage II and III HER2-positive breast cancer
were randomly assigned to receive weekly paclitaxel combined with trastuzumab plus lapatinib (THL), tras-
tuzumab (TH), or lapatinib (TL). The primary end point was pCR, and secondary end points included RFS, OS,
and gene expression analyses. mRNA sequencing was performed on 264 pretreatment samples.

RESULTSOne hundred eighteen patients were randomly allocated to THL, 120 to TH, and 67 to TL. At more than
7 years of follow-up, THL had significantly better RFS and OS than did TH (RFS hazard ratio, 0.32; 95% CI, 0.14
to 0.71; P5 .005; OS hazard ratio, 0.34; 95% CI, 0.12 to 0.94; P5 .037), with no difference between TH and
TL. Of 688 previously described gene expression signatures, significant associations were found in 215 with
pCR, 45 with RFS, and only 22 with both pCR and RFS (3.2%). Specifically, eight immune signatures were
significantly correlated with a higher pCR rate and better RFS. Among patients with residual disease, the
immunoglobulin G signature was an independent, good prognostic factor, whereas the HER2-enriched sig-
nature, which was associated with a higher pCR rate, showed a significantly shorter RFS.

CONCLUSION In CALGB 40601, dual HER2-targeting resulted in significant RFS and OS benefits. Integration of
intrinsic subtype and immune signatures allowed for the prediction of pCR and RFS, both overall and within the
residual disease group. These approaches may provide means for rational escalation and de-escalation
treatment strategies in HER2-positive breast cancer.
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INTRODUCTION

Human epidermal growth factor receptor 2 (HER2) is
amplified and overexpressed in 15% to 20% of all
breast cancers and, when untreated, is the most ag-
gressive breast cancer phenotype. Over the past
20 years, the prognosis of HER2-positive breast cancer
has been markedly improved with the implementation
of anti-HER2 targeted therapies. In neoadjuvant ran-
domized trials, dual HER2 blockade is associated with
a higher pathologic complete response (pCR) rate
compared with that of single agents.1-5 In the absence
of chemotherapy, dual HER2 blockade alone is as-
sociated with pCR rates of approximately 25%6,7;

however, large adjuvant trials have demonstrated
only marginal survival benefit of dual HER2 block-
ade compared with standard trastuzumab added to
chemotherapy.8,9

Both the intrinsic complexity of HER2-positive tumors
and the properties of its tumor microenvironment are
responsible for the differences in response to anti-
HER2 targeted therapies. HER2-positive disease is
highly heterogeneous. All the intrinsic subtypes—
Luminal A, Luminal B, HER2 Enriched, Basal like, and
Normal like—can be identified within HER2-positive
tumors by gene expression. Among them, the HER2-
Enriched subtype has been systematically associated

ASSOCIATED
CONTENT

Data Supplement

Author affiliations
and support
information (if
applicable) appear
at the end of this
article.

Accepted on
September 21, 2020
and published at
ascopubs.org/journal/
jco on October 23,
2020: DOI https://doi.
org/10.1200/JCO.20.
01276

1

Downloaded from ascopubs.org by University of North Carolina on October 23, 2020 from 152.002.176.242
Copyright © 2020 American Society of Clinical Oncology. All rights reserved. 

https://ascopubs.org/doi/suppl/10.1200/JCO.20.01276
http://ascopubs.org/journal/jco
http://ascopubs.org/journal/jco
http://ascopubs.org/doi/full/10.1200/JCO.20.01276
http://ascopubs.org/doi/full/10.1200/JCO.20.01276
http://ascopubs.org/doi/full/10.1200/JCO.20.01276
http://crossmark.crossref.org/dialog/?doi=10.1200%2FJCO.20.01276&domain=pdf&date_stamp=2020-10-23


with higher pCR rates to anti-HER2 targeted therapies
across multiple neoadjuvant clinical trials.3,6,10-17 At a DNA
level, PIK3CA mutations have also been associated with
lower treatment response.18,19 Apart from intrinsic tumor
characteristics, different immune system features have
been correlated with a higher pCR rate in HER2-positive
breast cancer, including the presence of tumor-infiltrating
lymphocytes (TILs),14,20-24 programmed death ligand-1
protein expression,23 T-cell receptor diversity metrics,25

and immune gene-expression signatures.3,12,26 TILs in
the NeoALTTO trial22 showed a significant association with
survival.

Patients with clinical stage II and III HER2-positive breast
cancer are typically treated with neoadjuvant chemother-
apy plus HER2 targeting because of the effect of neoadjuvant
treatment on surgical end points (smaller surgeries and
less need for axillary lymph node dissection) and the tai-
loring of therapy by pCR status now that patients with re-
sidual disease (RD) receive ado-trastuzumab emtansine.27

Thus, pCR is no longer merely an intermediate biomarker
of outcome, rather both pCR and survival are clinically
meaningful end points.

We have previously reported the pCR end points for
CALGB 40601 (now part of the Alliance for Clinical Trials
in Oncology), including finding a significant contribu-
tion to pCR of intrinsic subtype and immune gene sig-
natures.3 Here, we report CALGB 40601 prespecified
secondary end points of relapse-free survival (RFS) and
overall survival (OS), with a median follow-up of 7 years,
and the association between pCR and RFS/OS. Using
the transcriptome analyses from pretreatment biopsies,
we performed an exploratory analysis to test the ability
of clinical and genomic biomarkers to predict pCR and
RFS at 7 years. Understanding which biomarkers are
going to have an influence on both pCR and survival
outcomes will help build prognostic tools to design future

escalation and de-escalation trials in HER2-positive
breast cancer.

PATIENTS AND METHODS

CALGB 40601 Study Design and Patients

The CALGB 40601 study design and pCR results have
been previously published.3 A total of 305 women with
stage II and III HER2-positive breast cancer were randomly
assigned to receive paclitaxel (T) at 80 mg/m2 once per
week, with the addition of trastuzumab (H; 4 mg/kg loading
dose followed by 2 mg/kg), lapatinib (L; 1,500 mg/d), or
both (L at 1,000 mg/d plus the same dose of H) for 16
weeks. On the basis of reports of inferiority and higher
toxicity, the TL arm was closed early; patients who were
randomly assigned to that arm completed treatment.
Protocol-defined therapy ended at surgery. It was recom-
mended that all patients receive dose-dense doxorubicin
and cyclophosphamide (AC) and complete 1 year of trastu-
zumab adjuvantly.

The primary end point was pCR, defined as no invasive
tumor in the breast at surgery. Secondary end points in-
cluded RFS and OS. RFS was defined as the interval from
surgery to ipsilateral invasive breast tumor recurrence,
regional recurrence, distant recurrence, or death of any
cause, whichever occurred first. Patients without an event
were censored at the date of the last clinical assessment.
OS was defined as the interval from random assignment to
death or last follow-up. Clinical data collection and statis-
tical analyses were conducted by the Alliance Statistics
and Data Center.

Sample Acquisition and Biospecimen Processing

Participants underwent four pretreatment 16-gauge core
biopsies for research. The CONSORT diagram (Data
Supplement) shows the flow of participants from the
intention-to-treat (ITT) population to the gene expression

CONTEXT

Key Objective
Here, we report CALGB 40601 prespecified secondary end points of relapse-free survival (RFS) and overall survival with

a median follow-up of 7 years and a comprehensive exploratory analysis testing the ability of hundreds of genomic
biomarkers to predict not only pathologic complete response (pCR), but also RFS.

Knowledge Generated
In CALGB 40601, there was a significant improvement in RFS and overall survival at 7 years with dual (lapatinib and

trastuzumab) versus single anti-HER2 therapy. Biomarker analysis showed that the HER2-enriched subtype, a key
independent predictor of pCR, was also an inverse predictor of RFS, whereas immune gene expression signatures were
significantly correlated with higher pCR rates and better RFS.

Relevance
For future escalation and de-escalation strategies in HER2-positive breast cancer, we may need to integrate the information

provided by clinical parameters, intrinsic subtype, and immune signatures to best predict response and survival.
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cohort. Patients with inadequate RNA quality were ex-
cluded from the final gene expression cohort, which
consisted of 264 patients. All 264 patients signed an in-
stitutional review board–approved, protocol-specific informed
consent document following federal and institutional guide-
lines. This document also included consent for biomarker
research.

Tumor Gene Expression Analyses

Gene expression profiles from pretreatment core biopsies
were generated by RNA sequencing using an Illumina
HiSEquation 2000 (Data Supplement).28 Intrinsic subtype
biomarkers were obtained by the PAM50 predictor29 after
applying a new HER2/estrogen receptor subgroup-specific
gene normalization method (Data Supplement).30 Gene
expression signatures and single genes representing mul-
tiple biologic pathways and cell types (Data Supplement)
were also assessed following different specifications (Data
Supplement).

Data Analysis and Interpretation

ANOVA and Fisher exact test were used to compare
clinicopathologic variables between different treatment and
biomarker groups. Proportions and 95%CIs were provided.
We estimated 7-year RFS and OS rates for each treatment
arm and pCR group using the Kaplan-Meier method. The
relationship between clinical and genomic biomarkers with
pCR and/or RFS was assessed using univariable and
multivariable logistic and Cox proportional hazards re-
gression models, respectively. Odds ratios, hazard ratios
(HRs) and 95% CIs were calculated for each response
variable. The significance level was set to a two-sided a of
.05, and P values were unadjusted for multiplicity. The
Akaike Information Criterion and Bayesian Information
Criterion were used to analyze the goodness of fit of two
competing statistical models. Collinearity between gene
expression continuous variables was evaluated using
Pearson correlation. High-dimensional modeling for pCR
and RFS was done by Elastic Net (R package glmnet31). A
detailed description can be found in the Data Supplement.
Analyses were based on the clinical study database frozen
on April 3, 2019, and all statistical analyses were performed
using R 3.5.2 and Python 3.6.

RESULTS

Clinicopathologic Characteristics

From December 2008 to February 2012, 305 patients were
randomly assigned to one of three treatment groups: 118 to
trastuzumab plus lapatinib (THL), 120 to TH, and 67 to TL.
Of the 305 patients, 299 began protocol treatment; pCR
was evaluable in 295 patients. RNA sequencing was
performed on 264 pretreatment tumor samples (Data
Supplement). Patient characteristics were balanced by
treatment arm in both the RNA sequencing and the ITT
populations (Table 1). pCR rates in the ITT subpopulation
were 57% (95% CI, 47% to 66%) in the THL arm,

45% (95% CI, 36% to 54%) in the TH arm, and 30%
(95% CI, 19% to 42%) in the TL arm, slightly different from
the original pCR rates3 that were calculated using the pCR-
evaluable cohort (n 5 295). After surgery, as recom-
mended by the protocol, 51% received AC and 73%
completed 1 year of trastuzumab. There was no imbalance
by treatment arm in either the RNA sequencing and the ITT
cohorts (Table 1).

RFS and OS Analyses

With a median follow-up of 83 months from random as-
signment (interquartile range, 71 to 90 months), RFS
events were recorded in 16% of participants: 18 (26.9%) in
the TL arm, 24 (20%) in the TH arm, and eight (6.8%) in
the THL arm, with corresponding 7-year RFS rates of
69% (95% CI, 58% to 82%; TL), 79% (95% CI, 71% to
87%; TH), and 93% (95% CI, 88% to 98%; THL). The RFS
difference between the THL and control TH arms was
highly statistically significant (HR, 0.32; 95% CI, 0.14 to
0.71; P 5 .005; Fig 1A). Nine deaths (13.4%) occurred in
the TL arm, 14 (11.7%) in the TH group, and four (3.4%) in
the THL group, with corresponding 7-year OS rates of
84% (TL), 88% (TH), and 96% (THL). OS was significantly
higher in the THL compared with the TH arm (HR, 0.34;
95% CI, 0.12 to 0.94; P5 .037; Fig 1B). Neither receipt of
adjuvant AC, nor whether the full year of adjuvant trastu-
zumab was completed, altered these relationships (Data
Supplement).

When all treatment groups were combined, a significant
association between pCR and RFS was found. Of the
141 patients who achieved pCR, 14 (9.9%) had an RFS
event compared with 35 (23%) of 154 patients with RD
(HR, 0.42; 95% CI, 0.23 to 0.78; P 5 .006; Fig 1C). Pa-
tients who achieved pCR also had improved OS benefit
compared with patients with RD (HR, 0.3; 95% CI, 0.12 to
0.74; P 5 .009; Fig 1D). pCR and treatment effect in RFS
and OS were preserved also in the RNA sequencing
subpopulation (Data Supplement).

Intrinsic Subtype Association With Response and RFS

Using a new and improved PAM50 normalization method
(Data Supplement), the majority of tumors were HER2
Enriched (146 of 264; 55%), followed by Luminal B (13%),
Normal like (12%), Luminal A (11%), and Basal like (8%;
Data Supplement). Although subtype distribution signifi-
cantly differed by hormone receptor status (P , .001), the
HER2-Enriched subtype was the most frequent subtype
identified in both hormone receptor–positive and –negative
groups (44% and 72%, respectively; Data Supplement).

pCR in the breast was achieved in 89 (61%) of 146 HER2-
Enriched patients compared with 29 (25%) of 118
non–HER2-Enriched patients (odds ratio, 3.8; 95% CI,
2.23 to 6.72; P, .001; Data Supplement). Significant RFS
differences were found among the different subtypes.
Luminal A tumors, with the lowest pCR rate (14.3%),
carried the best RFS outcome, with no events recorded
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after 7 years of follow-up. In contrast, HER2-Enriched
patients, with the highest pCR rate, carried a significantly
worse RFS outcome, with 30 (20.5%) of 146 RFS events
recorded (Data Supplement). Of interest, only 10 (11%) of
89 HER2-Enriched pCR patients had an RFS event com-
pared with 20 (35%) of 57 HER2-Enriched RD patients.

Genomic Modeling for pCR and RFS

In our previous analyses,3,26 prespecified gene expression
signatures—intrinsic subtype, immune activation—
significantly and independently contributed to pCR. Building

on this, we sought to create a unified predictive model
for both pCR and RFS. OS data, with a low number of events
(n 5 28), were not mature enough for high-quality pre-
dictive modeling. We first built 688 logistic regression
models to test the ability of each genomic variable to
predict pCR in the presence of clinical information, in-
cluding treatment arm, clinical stage, and hormone re-
ceptor status. A total of 215 genomic variables (31.25%)
were significantly associated with pCR (Data Supplement).
In concordance with our previous results,3,26 subtype-
related biomarkers, like the HER2-Enriched signature, the

TABLE 1. Baseline Characteristics of the Intention-to-Treat and Biomarker Populations by Treatment Arm

Characteristic

ITT Subpopulation
(n 5 305), No. (%)

RNA Sequencing Subpopulation
(n 5 264), No. (%)

THL Arm
(n 5 118)

TH Arm
(n 5 120)

TL Arm
(n 5 67) P

THL Arm
(n 5 103)

TH Arm
(n 5 104)

TL Arm
(n 5 57) P

Age, years .396 .602

Median 48 50 48 48 49 51

Range 24-70 30-75 25-74 24-70 30-75 25-74

Menopausal status .348 .293

Pre 72 (61.0) 63 (52.5) 39 (58.2) 65 (63.1) 59 (56.7) 30 (52.6)

Post 42 (35.6) 54 (45.0) 27 (40.3) 34 (33.0) 42 (40.4) 26 (45.6)

Missing 4 (3.4) 3 (2.5) 1 (1.5) 4 (3.9) 3 (2.9) 1 (1.8)

Racial or ethnic group .23 .293

Black 10 (8.5) 10 (8.3) 3 (4.5) 9 (8.7) 9 (8.7) 3 (5.3)

White 90 (73.6) 99 (82.5) 60 (89.3) 79 (76.7) 85 (81.7) 51 (89.4)

Other 18 (15.3) 11 (9.2) 4 (6.0) 15 (14.6) 10 (9.6) 3 (5.3)

ECOG PS .296 .426

0 110 (93.2) 107 (89.2) 63 (94) 95 (92.2) 93 (89.4) 54 (94.7)

1 5 (4.2) 11 (9.2) 3 (4.5) 5 (4.9) 9 (8.7) 2 (3.5)

Missing 3 (2.5) 2 (1.7) 1 (1.5) 3 (2.9) 2 (1.9) 1 (1.8)

HR status .988 .91

Positive 70 (59.3) 70 (58.3) 39 (58.2) 60 (58.3) 62 (59.6) 32 (56.1)

Negative 48 (40.7) 50 (41.7) 28 (41.8) 43 (41.7) 42 (40.4) 25 (43.9)

Clinical stage .79 .556

II 81 (68.6) 80 (66.7) 48 (71.6) 69(67) 68 (65.4) 42 (73.3)

III 37 (31.4) 40 (33.3) 19 (28.4) 34(33) 36 (34.6) 15 (26.3)

Adjuvant AC .863 .503

No 59 (50.0) 60 (50.0) 31 (46.3) 68 (66.0) 71 (68.3) 41 (71.9)

Yes 59 (50.0) 60 (50.0) 36 (57.7) 35 (34.0) 33 (31.7) 16 (28.1)

1-year adjuvant trastuzumab .204 .624

No 30 (25.4) 29 (24.2) 24 (35.8) 24 (23.3) 25 (24.0) 17 (29.8)

Yes 88 (74.6) 91 (75.8) 43 (64.2) 79 (76.7) 79 (76.0) 40 (70.1)

NOTE. The P value for the distribution differences between treatment arms in the ITT and RNA sequencing cohorts were assessed by a one-
way ANOVA test (median age) and Fisher exact test (menopausal status, racial or ethnic group, ECOG PS, HR status, clinical stage, adjuvant AC,
1 year of adjuvant trastuzumab).

Abbreviations: AC, doxorubicin and cyclophosphamide; ECOG PS, Eastern Cooperative Oncology Group; HR, hormone receptor; ITT, intention
to treat; pCR, pathologic complete response; TH, paclitaxel plus trastuzumab; THL, paclitaxel, trastuzumab and lapatinib; TL, paclitaxel and
lapatinib.

4 © 2020 by American Society of Clinical Oncology

Fernandez-Martinez et al

Downloaded from ascopubs.org by University of North Carolina on October 23, 2020 from 152.002.176.242
Copyright © 2020 American Society of Clinical Oncology. All rights reserved. 



PAM50 risk of recurrence, ERBB2 gene expression, and
B cell/immunoglobulin G (IgG) immune signatures were
found to powerfully and positively predict pCR. In contrast,
luminal parameters, like ESR1 gene expression, the Lu-
minal A signature, the Luminal Tumor Score,32 the chemo-
endocrine score (CES),33 and the LumA-HER2-E scores
were negative predictors of response.

Similarly, we created Cox proportional hazards regression
models to predict RFS at 7 years. Only 45 (6.54%) of the
688 biomarkers tested were significantly associated with
RFS, and neither receipt of adjuvant AC, nor completion of
adjuvant trastuzumab altered this association (Data Sup-
plement). Twenty-two (3.2%) were significantly associated
with both pCR and RFS (Fig 2 and Data Supplement),

including seven intrinsic subtype-related biomarkers and
eight immune signatures. Of interest, all the immune sig-
natures, which were strongly correlated with higher pCR
rate, were also associated with longer RFS. In contrast, all
the tumor-related biomarkers worked in opposite directions
for the prediction of pCR and RFS. Akaike Information
Criterion and Bayesian Information Criterion tests showed
a better fit of the univariable LumA-HER2-E score pCR and
RFS models compared with the HER2-Enriched and Lu-
minal A models (Data Supplement).

A high Pearson correlation among the different genomic
biomarkers was observed (Data Supplement). To handle
this collinearity, we used Elastic Net to build two high-
dimension models for predicting pCR and RFS at 7 years
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FIG 1. Kaplan-Meier curves for relapse-free survival (RFS) and overall survival (OS) in the intention-to-treat (ITT)
population. (A) Kaplan-Meier estimates of RFS at 7 years by treatment arm in the ITT population, showing
a significant benefit of THL (paclitaxel, trastuzumab, and lapatinib) versus TH (paclitaxel plus trastuzumab)
treatment arms. (B) Kaplan-Meier estimates of OS at 7 years by treatment arm in the ITT population, showing
a significant benefit of THL versus TH treatment arms. (C) Kaplan-Meier estimates of RFS at 7 years by pathologic
complete response (pCR) status in the ITT population, showing a significant improvement in outcome in pCR
versus residual disease (RD). (D) Kaplan-Meier estimates of OS at 7 years by pCR status in the ITT population,
showing a significant improvement in outcome in pCR versus RD. HR, hazard ratio; TL, paclitaxel and lapatinib.
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using as outcome time to an event. The best pCR model
included 55 (7.9%) of 696 (eight clinical and 688 genomic)
variables and an area under the curve value of 0.82 in the
train set and 0.75 in the test set, in the line of the ex-
pected values from cross-validation (Data Supplement). This
model included clinical features, such as treatment arm, as
well as several subtype and immune B-cell and T-follicular
helper signatures, ESR1 and ERBB2 gene expression, and
some supervised signatures, such as the CES33 and LumA-
HER2-E scores. The optimal RFS model included 46
(6.6%) of 697 (nine clinical and 688 genomic) variables,
with a C-index of 0.88 in the train set and 0.63 when
applied to the test set, in line with the expected values from
cross-validation (Data Supplement). In this model, clinical
parameters, such as pCR status and treatment arm, carried
the greatest weights. Subtype-related biomarkers and
multiple B-cell and T-cell signatures were also present.
From all 688 genomic variables tested, only nine (1.3%)
were present in both models (Data Supplement). In par-
ticular, five immune signatures were included within
the significant positive features for response and RFS
prediction: two IgG signatures, one B-cell/plasma cell
signature, one T-helper signature, and a T-cell/B-cell
cooperation signature.34 In contrast, all subtype-related
biomarkers worked in opposite directions for the pre-
diction of pCR and RFS. Of interest, the LumA-HER2-E
score was selected together with the HER2-Enriched and
the Luminal A signatures for both models. The CES33 score

and the ESR1 and ERBB2 gene expression, present in the
pCR model, were not selected by Elastic Net as RFS
predictors.

The predictive value of HER2-Enriched and the IgG sig-
natures, or whether these two biomarkers can predict the
benefit of dual over single HER2 blockade was also ex-
plored (Data Supplement). HER2-Enriched and IgG-high
patients treated with THL had a significant RFS benefit
compared with TH (HR, 0.28; 95% CI, 0.1 to 0.77;
P 5 .014; and HR, 0.09; 95% CI, 0.01 to 0.72; P 5 .023)
with no significant differences in non–HER2-Enriched and
IgG-low subgroups; however, both interaction tests were
nonsignificant. Consequently, we could not establish the
predictive value of these two biomarkers.

Genomic Signatures for RFS Within Patients With RD

The RD subset was of particular interest given the thera-
peutic and prognostic implications, as well as the discor-
dance of the pCR and RFS relationship in key signatures. In
two univariable Cox proportional hazards regressionmodels
in patients with RD, the HER2-Enriched signature was
significantly correlated with shorter RFS (HR, 1.77; 95%CI,
1.19 to 2.62; P 5 .005), whereas the IgG signature was
correlated with longer RFS (HR, 0.65; 95%CI, 0.46 to 0.93;
P 5 .019). Moreover, HER2-Enriched or IgG-low RD pa-
tients had significantly shorter RFS interval (Data Supple-
ment). In multivariable Cox analysis, the IgG signature
remained an independent good prognostic factor (HR,
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FIG 2. Association between odds ratio (OR) and hazard ratio (HR) in 16 significant biomarkers of response
and survival. OR and HR values have been log transformed. Whereas all the immune-related biomarkers
predicted a higher response and a longer relapse-free survival (RFS), subtype-related biomarkers showed
the opposite direction for the prediction of response and survival. For subtype-related biomarkers, the
correlation to each PAM50 centroid was used. CES, chemoendocrine score; HER2-E, HER2-enriched; IgG,
immunoglobulin G; LumA, Luminal A; P, proliferation; pCR, pathologic complete response; ROR, risk of
recurrence; S, subtype.
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0.60; 95% CI, 0.41 to 0.86; P 5 .005), whereas patients
with RD with higher HER2-Enriched signature had signif-
icantly worse RFS (HR, 2.12; 95% CI, 1.35 to 3.35;
P 5 .001; Fig 3). Of interest, hormone receptor status was
not significantly associated with RFS in this group.

DISCUSSION

In CALGB 40601, women whose tumors had pCR to
neoadjuvant chemotherapy plus HER2 targeting had sig-
nificantly better RFS and OS than did women with RD,
a finding consistent with many other neoadjuvant trials. Of
interest, there was a significant improvement in RFS and
OS at 7 years with dual therapy in this trial, a surprising
finding given that a large adjuvant trial, ALTTO, which
included a lower clinical risk but otherwise similar patient
population, demonstrated only a modest and statistically
nonsignificant effect (disease-free survival HR, 0.84) of
adding lapatinib administered for a longer duration.8 A trial
similar in population and intervention to CALGB 40601,
NeoALTTO, found numerically higher but nonsignificant
EFS differences with dual therapy (84% v 76%)35; as in
CALGB 40601, survival outcome was a secondary end
point. For these reasons, our statistically significant effect of
dual therapy on relapse and survival should be considered
in the context of its secondary analytic nature and the
results of other trials suggesting a far more limited impact of
dual therapy.

Accumulating evidence supports the clinical validity of two
prognostic biomarkers in HER2-positive breast cancer:
intrinsic subtype and immune cell features. The HER2-
Enriched subtype, a key and independent predictor of pCR,
was also found to be an inverse predictor of RFS. Spe-
cifically, HER2-Enriched patients, with the highest pCR rate
of the tumor intrinsic subtypes, had significantly worse RFS

than did patients with Luminal A tumors, even in the
presence of HER2-targeted drugs. This finding, which fails
to conform to the known association of pCR with outcome,
is consistent with emerging data regarding the complexity
of the relationship of pCR with RFS and the effect of
confounding but unmeasured variables when the focus is
entirely on pCR. This is an example of Simpson’s paradox,36

in which the confounding variable is the substantially worse
RFS outcome among HER2-Enriched tumors with RD.
Genomically, the HER2-Enriched subtype is the most
HER2 oncogene addicted of the subtypes, which likely
explains the high sensitivity to anti-HER2 therapies and
may also explain why an HER2-Enriched tumor resistant to
anti-HER2 therapies administered neoadjuvantly carries
a particularly poor prognosis. Luminal tumors, which
comprise the majority of non–HER2-Enriched among
clinically HER2-positive tumors, are genomically driven by
hormone receptor–related pathways and are usually hor-
mone receptor positive, likely benefiting from 5 to 10 years
of adjuvant endocrine therapy.

Conversely, evidence of immune activation using multiple
RNA-based signatures was significantly and independently
directly associated with a higher likelihood of pCR and better
RFS. Whether a pathology-based approach, such as TILs, will
perform similarly as well as multigene expression profiling is
unknown. In NeoALTTO, TILs and immune signatures
seemed to predict higher pCR,12,22 whereas only TILs por-
tended statistically significant better event-free survival.22

The combination of HER2-Enriched and IgG signatures
provided more prognostic information than either alone; to
build a useful prognostic tool for patients with HER2-positive
breast cancer, both biomarkers should be taken into ac-
count. We also found that these signatures may provide
augmented clinical value in patients with RD.

Variable Hazard Ratio (95% CI) P

0 0.5 1 1.5 2 2.5 3 3.5 4

Shorter RFSLonger RFS

Hazard Ratio (95% CI)

THL v TH

TL v TH

HR+ v HR–

Stage III v stage II

Correlation to HER2-E

IgG signature

.014

.995

.644

.016

.001

.005

0.32 (0.11 to 0.78)

1.0 (0.43 to 2.33)

1.21 (0.54 to 2.73)

2.46 (1.18 to 5.1)

2.12 (1.35 to 3.35)

0.60 (0.41 to 0.86)

FIG 3. Forest plot representing a multivariable Cox proportional hazards regression analysis within the residual
disease group of patients. HER2-enriched (HER2-E) subtype was correlated with shorter relapse-free survival (RFS),
whereas immunoglobulin G (IgG) signature was an independent good prognosis factor. The correlation to the HER2-
E centroid and the IgG gene expression signature, both as continuous variables, were used for the multivariable Cox
proportional hazards regression analysis. HR, hormone receptor; TH, paclitaxel plus trastuzumab; THL, paclitaxel,
trastuzumab, and lapatinib; TL, paclitaxel and lapatinib.
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Our study has several strengths. First, the clinical trial has
mature RFS and OS estimates. Second, we were able to
perform a comprehensive genomic analysis on a significant
proportion (86.6%) of the pretreatment specimens. Third,
we performed an integrated analysis of clinical parameters
and 688 genomic biomarkers, testing their ability to predict
not only response but also survival. Although the gene
expression correlative analysis of the NOAH and the
NeoALTTO trials previously identified an association be-
tween a small number of signatures with pCR and event-
free survival,10,12 the current study is the most compre-
hensive effort to date to correlate pCR andRFS predictors in
HER2-positive breast cancer. Efforts of this type are key to
identifying mechanisms to more precisely select patients
who are appropriate for de-escalation strategies, as was
done in the APT trial using only low-risk clinical features37 or
escalation strategies, such as the use of adjuvant ado-
trastuzumab emtansine.

In contrast, our study also has several limitations. First,
CALGB 40601 was not powered to detect a survival ben-
efit, and it was not designed to be prescriptive regard-
ing adjuvant therapy other than the recommendation of

completion of AC chemotherapy and of 1 year of adjuvant
trastuzumab. For this reason, RFS biomarker analysis
should be also interpreted with caution. Second, the anti-
HER2 approaches used in the trastuzumab-containing
arms are consistent with the current standard of care, but
lapatinib is not used in the early breast cancer setting
because of the negative results of the ALTTO trial.8 Finally,
TILs assessment in the pretreatment specimens has not
been performed yet and will be reported in a future
analysis.

To conclude, in CALGB 40601, dual HER2 blockade with
lapatinib added to trastuzumab and chemotherapy dem-
onstrated a significant effect on RFS compared with tras-
tuzumab plus chemotherapy alone, and patients who
achieved pCR had significantly better outcomes than pa-
tients with RD. However, most patients with RD did not
experience relapse, and some pCR patients did experience
relapse. Our genomic data suggest that future escalation
and de-escalation strategies may benefit from integrating
the information provided by clinical parameters, intrinsic
subtype, and immune signatures to predict not only re-
sponse, but also survival.
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Supplemental Figure 1. Kaplan-Meier curves for relapse-free survival (RFS) and overall
survival (OS) in the gene-expression cohort of patients.

1A . Kaplan-Meier estimates of RFS at 7 years by treatment arm in the gene-expression population,
showing a significant RFS benefit of the THL vs. TH treatment arm.
1B . Kaplan-Meier estimates of OS at 7 years by treatment arm in the gene-expression population,
showing a significant OS benefit of the THL vs. the TH treatment arm.
1C . Kaplan-Meier estimates RFS at 7 years by pCR status in gene-expression population, showing a
RFS benefit of pCR vs. RD patients.
1D. Kaplan-Meier estimates of OS at 7 years by pCR in the gene-expression population, showing a OS
benefit of pCR vs. RD patients.

ITT, intention-to-treat; pCR, pathologic complete response; THL, paclitaxel, trastuzumab and lapatinib;
TH, paclitaxel plus trastuzumab; TL, paclitaxel and lapatinib; RD, residual disease; HR Hazard ratio;
RFS, relapse-free survival; CI, confident interval.
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Supplemental Figure 2. Intrinsic subtype distribution, pCR, and relapse-free survival implications. The
absolute tumor intrinsic subtype as a discrete variable was used for these figures.

2A . Intrinsic subtype distribution among the study population of clinically HER2-positive tumors,
demonstrating that all the intrinsic subtypes can be found inside HER2-positive disease.

2B . Pathologic complete response (pCR) rates demonstrating significant variation across di!erent
subtypes. Error bars represent 95% confidence limits.

2C . Kaplan-Meier estimates of relapse-free survival at 7 years, demonstrating the prognostic
di!erences by tumor intrinsic subtype.

HER2-E, HER2-enriched; LumA, Luminal A; LumB, Luminal B; RFS, relapse-free survival; CI, confident
interval.
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Supplemental Figure 3. Intrinsic subtype distribution di!ered between hormone receptor (HR) positive
(3A ) and negative ( 3B ) tumors (Fisher' s exact test p-value < .001).

HR, hormone receptor; HER2-E, HER2-Enriched; LumA, Luminal A; LumB, Luminal B.
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Supplemental Figure 4. Twenty-two genomic biomarkers significantly associated with pathologic
complete response (pCR) and relapse-free survival (RFS). For subtype-related biomarkers, the correlation to
each PAM50 centroid was used.

4A. Forest plot representing 22 logistic-regression models significantly associated with pCR.

4B . Forest plot representing 22 Cox-regression models significantly associated with RFS.

pCR, pathologic complete response; RFS, relapse-free survival; HER2-E, HER2-Enriched; ROR, risk of
recurrence; S, subtype; S-P, subtype and proliferation; CES, chemo-endocrine score; LumA, luminal A,
IgG, immunoglobulin G; MHC, major histocompatibility complex.



Supplemental Figure 5. Pearson's correlation matrix of 688 genomic biomarkers demonstrating the high
collinearity between them . Positive significant Pearson correlations are displayed in blue, negative
significant correlations in red, and non-significant correlations are displayed in white color. Color intensity
is proportional to the correlation coefficient. For subtype-related biomarkers, the correlation to each PAM50
centroid was used.
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Supplemental Figure 6. Optimum Elastic-Net models for the prediction of response and survival. This
figure represents the final model fit in the train and the test sets.

6A and 6B. Area under the curve (AUC) from the Receiver operating characteristic (ROC) curves were
estimated for the optimum Elastic net model for pCR prediction in the train ( 7A ) and the test ( 7B ) sets.
Clinical parameters and 688 gene expression signatures were tested as predictors. All RNAseq cohort
was used to create this model (n = 264).

6C and 6D. Kaplan Meier curves and c-index were estimated for an Elastic Net model for RFS
prediction at 7 years in the train ( 7C ) and the test ( 7D) sets. Clinical parameters and 688 gene
expression signatures were tested as predictors. All RNAseq cohort was used to create this model (n
= 264).

AUC, area under the curve; THL, paclitaxel, trastuzumab and lapatinib; TH, paclitaxel plus
trastuzumab; TL, paclitaxel and lapatinib; RFS, relapse-free survival; RNAseq, RNA sequencing.
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Supplemental Figure 7. Evaluation of the predictive value of HER2-Enriched (HER2-E) subtype and
Immunoglobulin G (IgG) signature. There was a significant benefit of dual (trastuzumab-lapatinib) vs. single
(trastuzumab) treatment in the HER2-E patients and IgG-high patients, with no significant di!erences in
other subtypes or IgG-Low patients. However, the interaction tests were non-significant.

7A. Evaluation of the predictive and prognostic value of HER2-Enriched (HER2-E) biomarker in EFS at 7
years according to treatment arm. The absolute tumor intrinsic subtype HER2-Enriched vs. others (Luminal
A, Luminal B, Normal-like and Basal-like) was used.

7B. Evaluation of the predictive and prognostic value of IgG signature biomarker in EFS at 7 years
according to treatment arm. Patients were labelled as IgG-high (two upper tertiles) vs. IgG-low (lower
tertile).

THL, paclitaxel, trastuzumab and lapatinib; TH, paclitaxel plus trastuzumab; HR Hazard ratio; RFS,
relapse-free survival; CI, confident interval; HER2-E, HER2-Enriched, IgG immunoglobulin G.
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Supplemental Figure 8. Prognostic value of HER2-Enriched subtype and IgG status within the residual
disease (RD) cohort of patients.

8A. Kaplan Meier curves illustrating a significant shorter relapse-free survival (RFS) time in HER2-
Enriched patients vs. others (Luminal A, luminal B, Normal-like and Basal-like).

8B. Kaplan Meier curves illustrating a significant longer relapse-free survival (RFS) time in IgG-high
patients (two upper tertiles) vs. IgG low patients (lower tertile).

RFS, relapse-free survival; CI, confident interval; HER2-E, HER2-enriched, IgG immunoglobulin G.



1 

Survival, pathologic complete response, and genomics correlates from CALGB 

40601 (Alliance), a neoadjuvant phase III trial of paclitaxel-trastuzumab with 

or without lapatinib in HER2+ breast cancer. 

Fernandez-Martinez, et al 

SUPPLEMENTAL METHODS.  

RNA sequencing and expression quantification 

Whole transcriptome analyses by RNA sequencing (RNAseq) and gene expression analyses were 

performed in the Genomics Core High Throughput Sequencing Facility and analyzed by the 

University of North Carolina Lineberger Comprehensive Cancer Center Bioinformatics Core. 

Briefly, RNAseq libraries were made from total RNA using the Illumina TruSeq mRNA sample 

preparation kit and sequenced on an Illumina HiSeq 2000 using a 2x50bp configuration. Purity-

filtered reads were aligned to the human reference GRCh38/hg38 genome using Spliced 

Transcripts Aligned to a Reference (STAR) version 2.4.2a1. Transcript (GENCODE v22) 

abundance estimates were generated by Salmon version 0.6.02 in ‘-quant’ mode, based on the 

STAR alignments. Raw read counts for all RNAseq samples were normalized to a fixed upper 

quartile3. RNAseq normalized gene counts were then log2 transformed (zeros were unchanged), 

and genes were filtered for those expressed in 70% of samples. FASTQ files from RNAseq data 

are available via the NCBI dbGAP repository under accession number phs001570.v2.p1. The star-

salmon upper quartile normalized gene expression matrix is available in GEO under the accession 

number GSE116335. 
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Intrinsic subtype prediction and HER2/ER subgroup-specific gene centering method. 

One of the two goals of normalization before applying the PAM50 predictor was to correct the 

technical bias between the gene expression of two different platforms: the mRNAseq platform 

used in our study samples and the Agilent Human Microarrays utilized to create the original 

PAM50 UNC232 training set4. The second goal of this normalization method was to correct the 

differences in the biological composition between our study samples, all of them HER2-positive, 

and the original UNC232 training samples, with only 13% of HER2-positive tumors. The standard 

median centering that is routinely done before molecular subtyping prediction can produce 

inaccurate classifications when there is a difference in the distribution of clinicopathological 

characteristics between the study and the train set. To solve this problem, we applied a HER2/ER 

subgroup-specific gene centering method based on a previous publication5. We first collected the 

ER, PR, and HER2 IHC status from the original UNC232 training set samples, partially published4. 

30% of the training set samples (n = 63) did not have any HER2 IHC information. For these 

samples, the HER2 IHC status was calculated from gene expression data as follows: we first 

extracted the ERBB2 gene expression values from a collection of 345 samples with HER2 IHC 

information analyzed with the same Agilent Human Microarray platform than the original PAM50 

UNC232 training set 4; 265 samples were HER2-negative, and 80 samples were HER2 positive 

(IHC 3+ or IHC 2+ with a positive FISH). Then, we evaluated the ability of the ERBB2 gene 

expression to predict the HER2 IHC status as a binary variable. The area under the ROC curve 

was 0.86. With a sensitivity of 70% and a specificity of 93.2%, the Youden index, corresponding 

to an ERBB2 gene expression value of 1.265, was applied as a cutoff to the 63 training set samples 

without HER2 information. In total, 18/232 (7.76%) samples were considered HER2-positive/ER-

positive, and 12/232 (5.17%) samples were labeled as HER2-positive/ER-negative within the 
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UNC232 training set. To select the best sample combination possible, a bioinformatic algorithm 

was designed and applied to an external RNAseq gene-expression dataset of 142 HER2-positive 

samples from the PAMELA clinical trial (SOLTI, NCT01973660), to obtain the higher 

concordance between the RNAseq derived subtypes and Prosigna® (NanoString Technologies, 

Seattle, WA) subtypes. With a kappa index of agreement of 0.9, 13/18 HER2-positive/ER-positive, 

and 10/12 HER2-positive/ER-negative samples from the UNC232 training set were selected to 

create the final HER2/ER subgroup-specific gene centering columns5. The gene expression values 

of the PAM50 genes in the CALGB 40601 samples were then normalized by this method. After 

the gene normalization, the PAM50 predictor4 was applied. For each sample, we calculated the 

correlation coefficient to the PAM50 centroids (Basal-like, HER2-Enriched, Luminal A, Luminal 

B, and Normal-like signatures, respectively), the PAM50 proliferation signature and two PAM50 

risk of recurrence models (ROR-subtype and ROR-subtype-proliferation). Correlation to each 

PAM50 centroid as continuous variables were used for pCR and RFS logistic regression, Cox and 

Elastic Net modeling. 

 

Single genes and gene expression signatures 

Previous analysis of the CALGB 40601 and NeoALTTO trials showed a significant correlation of 

the single gene expression of ERBB2 and ESR1 with higher and lower pCR rates, respectively6,7. 

Also, in a correlative analysis of the APT trial, the protein expression of programmed death-ligand 

1 (PD-L1) by IHC was highly correlated with TILs infiltration and other immune gene-expression 

signatures8. Based on these results, the single gene expression of ERBB2, ESR1, PD-1 (PDCD1), 

and PD-L1 (CD274) genes was extracted for each sample after median-centering and standardizing 

the gene expression matrix. 
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We next applied a collection of 676 known gene signatures, representing multiple biological 

pathways and cell types, to the median-centered and standardized gene expression matrix. The list 

of signatures is summarized in Supplemental Table 1 and includes 48 signatures extracted from 

the Molecular Signature Database9 and 628 signatures from 105 publications partially summarized 

before10-13. The signature scores for each sample were calculated in different ways. For example, 

637 were computed by calculating the median expression of all the genes inside a signature, and 

39 supervised models were obtained using different predefined algorithms14-35. These supervised 

models include two PAM50-derived biomarkers, the chemo-endocrine (CES) score15, and a new 

LumA-HER2-E score. This last signature is a new finding building upon some of our previous 

findings. We have previously showed6 how correlation to HER2-Enriched centroid was highly 

correlated with higher pCR rate while the correlation to Luminal A centroid was highly correlated 

with lower pCR rate. Based on this result, we selected the correlation to Luminal A, and then we 

subtracted the correlation to HER2-Enriched subtype by sample, creating the new LumA-HER2-

E score. The performance of this biomarker in a univariate logistic regression analysis on a 

CALGB 40601 train and test sets and the external validation in a chemotherapy and trastuzumab 

treated cohort of the NOHA36 (ISRCTN86043495) and CHERLOB37 (NCT00429299) trials 

(ISRCTN86043495) is summarized in Supplementary Table 6. Multiple immune-related 

biomarkers were also included in this gene-signatures collection, most of them initially extracted 

by comparing the gene expression pattern of different immune cell sub-populations38,39. Other 

immune signatures, like our IgG/B cell signatures, were obtained by an unsupervised cluster of 

different breast cancer samples as previously described10,40.  
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High dimensional modeling for pCR and RFS 

Elastic Net (R package glmnet41) is a regularized regression method that linearly combines the L1 

and L2 penalties of the Ridge Regression and Least Absolute Shrinkage and Selection Operator42. 

This model addresses the collinearity of many biomarker variables (e.g., intrinsic subtype covaries 

with ESR1 gene expression). Our data was divided (90% train, 10% test) using a stratified 

sampling43 incorporating HR status, clinical stage, treatment arm, and, in the case of the RFS 

model, also pCR. Models were built to predict pCR or RFS in the training set, selecting lambda 

values over a grid of alpha values from 0.1 to 0.8 by 0.1 increments and lambdas recommended 

by glment, via 10-fold cross-validation41. Then, we calculated the accuracy of the different models 

over the training set, and we identified the optimal lambda and alpha combination with the 

minimum cross-validation error. Finally, we applied the final models to the test set. To evaluate 

the model fitting to the train/test sets, we evaluated the area under the receiver operating 

characteristic (ROC) curve for pCR prediction and the C-index for RFS. The primary purpose of 

using Elastic Net was to analyze which clinical and genomic features were most often included in 

both pCR and RFS optimized models. 
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