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SUMMARY
Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to under-
standing tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility
(scATAC-seq) profiles at single-cell resolution fromhuman ovarian and endometrial tumors processed imme-
diately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors
and enabled us to quantitatively link variation in chromatin accessibility to gene expression. We show that
malignant cells acquire previously unannotated regulatory elements to drive hallmark cancer pathways.
Moreover, malignant cells fromwithin the same patients show substantial variation in chromatin accessibility
linked to transcriptional output, highlighting the importance of intratumoral heterogeneity. Finally, we infer
the malignant cell type-specific activity of transcription factors. By defining the regulatory logic of cancer
cells, this work reveals an important reliance on oncogenic regulatory elements and highlights the ability
of matched scRNA-seq/scATAC-seq to uncover clinically relevant mechanisms of tumorigenesis in gyneco-
logic cancers.
INTRODUCTION

Dynamic interactions between various types of malignant and

non-malignant cells in solid tumors contribute to a range of bio-

logical phenomena, from cancer progression to therapeutic

response. Single-cell genomic technologies refined our ability

to interrogate the underlying cellular heterogeneity of tumors,

but most efforts to date have been limited to transcriptomics

via single-cell RNA sequencing (scRNA-seq) (Patel et al., 2014;

Lambrechts et al., 2018; Slyper et al., 2020; Davidson et al.,

2020; Kim et al., 2020; Cochrane et al., 2020). Although initial re-

ports have been transformative, it is evident that non-coding re-

gions of the genome, containing regulatory elements (e.g., cis-

acting distal enhancer elements), contribute profoundly to tumor

biology (Corces et al., 2018). These regulatory elements are often

rewired and repurposed by cancer cells to drive oncogenic tran-

scription (Kundaje et al., 2015; Mansour et al., 2014; Zhang et al.,

2016; Roe et al., 2017; Corces et al., 2018). Thus, a deeper un-

derstanding of the regulatory logic of cancer cells will provide
novel insights into the molecular underpinnings of tumor biology

and heterogeneity.

Advancements in the assay for transposase-accessible chro-

matin at the single-cell level (scATAC-seq) enable robust

profiling of the chromatin accessibility landscape, unveiling

layers of gene regulation including cis-regulatory elements

(Buenrostro et al., 2015; Cusanovich et al., 2015). Together,

scRNA-seq and scATAC-seq offer unprecedented resolution to

reveal complex epigenetic events underlying tumor biology

and give potential for the discovery of pathways governing

tumorigenesis going beyond the standard taxonomic identifica-

tion of cell types.

Few cancer datasets with matched scRNA-seq and scATAC-

seq exist, and no datasets have been reported for human gyne-

cologic tumors (Granja et al., 2019). Ovarian cancer (OC) and

endometrial cancer (EC) are two of the deadliest cancers among

women (Siegel et al., 2018). This is partly due to the aggressive

nature of these cancers, lack of targeted therapies, and often

late stage of diagnosis. Of note, OC portends a poor prognosis
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Table 1. Abbreviated clinical data and single-cell metadata for each patient tumor

Patient Cancer type Tumor site Histology Stage Age (years) Race BMI scATAC-seq cells scRNA-seq cells

1 endometrial endometrium endometrioid IA 70 AA 39.89 6,348 (6,649) 5,279 (5,697)

2 endometrial endometrium endometrioid IA 70 CAU 30.50 7,248 (6,658) 7,277 (7,963)

3 endometrial endometrium endometrioid IA 70 CAU 38.55 4,165 (7,241) 4,974 (6,054)

4 endometrial endometrium endometrioid IA 49 CAU 55.29 7,597 (7,917) 7,413 (8,110)

5 endometrial endometrium endometrioid IA 62 CAU 49.44 6,797 (7,881) 7,291 (8,403)

6 endometrial ovarya serous IIIA 74 CAU 29.94 6,643 (2,351) 6,866 (8,009)

7 ovarian ovary endometrioid IA 76 CAU 34.80 5,924 (7,107) 6,454 (8,295)

8 ovarian ovary HGSOC IIB 61 CAU 22.13 8,014 (7,898) 7,454 (8,181)

9 ovarian ovary HGSOC IIIC 59 AS 22.37 9,670 (9,942) 6,192 (6,939)

10 ovarian ovary carcinosarcoma IVB 69 CAU 23.72 4,439 (8,977) 7,663 (8,984)

11 gastric ovarya GIST IV 59 CAU 33.96 7,776 (11,066) 8,660 (10,094)

The last two columns depict the number of cells obtained post-quality control (QC) and, in parentheses, the total number of cells estimated using Cell

Ranger. AA, African American; AS, Asian; CAU, Caucasian. Extended clinical data for each patient (de-identified) can be found in Table S1.
aMetastatic event.
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and, although less common than breast cancer, is three times

more lethal (Siegel et al., 2018). EC is the sixth most frequently

diagnosed cancer in women globally and is one of few cancers

that is rising in mortality (Lortet-Tieulent et al., 2018; American

Cancer Society, 2016; Henley et al., 2018). The Cancer Genome

Atlas (TCGA) consortium has proposed molecular subtypes for

these cancers, but these stratification systems fail to account

for cell type composition and malignant cell heterogeneity within

tumors (Cancer Genome Atlas Research Network, 2011; Kan-

doth et al., 2013). We posit that cell populations within and be-

tween patient tumors are delineated by non-coding regulatory

elements that drive oncogene expression conferring enhanced

proliferation, drug resistance, and/or survival.

Herein, we present a catalog of matched scRNA-seq and scA-

TAC-seq data for 11 human gynecologic tumors (Table 1; Table

S1). This dataset, encompassing more than 170,000 single cells,

is of broad utility to the fields of single-cell genomics and cancer

biology. By analyzing these tumors using matched scRNA-seq

and scATAC-seq, we uncover clinically relevant non-coding

mechanisms for intratumoral heterogeneity and pathogenesis

of EC and OC. We also infer the activity of transcription factors

(TFs) that interact with malignant cell type-specific regulatory el-

ements and prioritize TFs on the basis of predicted druggability

(Tym et al., 2016; Mitsopoulos et al., 2021; Malladi et al., 2020).

RESULTS

Matched scRNA-seq and scATAC-seq of human
gynecologic tumors
Eleven treatment-naive patients underwent debulking surgery

with curative intent to remove tumors found either in the endo-

metrium or ovary (Table 1; Table S1). Following surgical resec-

tion, each tumor was dissociated into a suspension of live cells

and prepped for lipid droplet-based scRNA-seq and scATAC-

seq (Figure 1A; STAR Methods). Tumor specimens were never

frozen or fixed in any way, enabling high levels of cell viability

and robust sequencing coverage in single cells. All tumors

were primary tumors except for patient 6, diagnosed as an EC
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that metastasized to the ovary, and patient 11, diagnosed as a

gastro-intestinal stromal tumor (GIST) that metastasized to the

ovary. After quality control and doublet removal for each patient

dataset (STARMethods), we obtained 75,523 cells profiled using

scRNA-seq and 74,621 cells profiled using scATAC-seq.

To analyze scRNA-seq cells from the entire cohort, we per-

formed principal-component analysis (PCA) using the top

2,000 most variably expressed genes across all 75,523 cells.

Cells were classified into transcriptionally distinct clusters with

graph-based clustering using the top 50 principal components

(PCs) and visualized using a uniform manifold approximation

and projection (UMAP) plot. This revealed that clusters could

be annotated to known cell types (Aran et al., 2019) (Figure 1B,

left; Figure S1A; Table S2; STAR Methods) and batch effects

were not a major confounder (Figure 1C, left). To identify malig-

nant clusters across the entire cohort, we used clinical biomarker

gene expression and inferred copy number amplification/dele-

tion events (Figures S2–S4). We used expression of the U.S.

Food and Drug Administration (FDA)-approved biomarkers

MUC16/CA125 and WFDC2/HE4 to identify EC and OC cancer

clusters (Duffy et al., 2005; Sturgeon et al., 2008; Hellström

et al., 2003; Li et al., 2009; Dong et al., 2017). Expression of

KIT/CD117 was used to identify GIST cancer clusters (Sar-

lomo-Rikala et al., 1998). Inferred copy number variation (CNV)

was used to help identify OC andGIST but not EC, as the disease

rarely exhibits CNV (Berger et al., 2018).

To analyze scATAC-seq cells from the entire cohort, we created

amatrix of contiguous genomic tiles, across the genome, in which

we quantified fragment counts. We performed iterative latent se-

mantic indexing on the top 25,000 most variable genomic tiles

(Cusanovich et al., 2015; Satpathy et al., 2019; Granja et al.,

2021). To assign cell type cluster labels from matching scRNA-

seq data to scATAC-seq cells, we used the Seurat version 3

cross-modality integration approach (constrained to cells of the

same patient tumor) (Figure 1B, right; Figure S1; Table S3;

STAR Methods) (Stuart et al., 2019). This revealed scATAC-seq

cells that clustered mainly by cell type and not by patient, high-

lighting the quality of the dataset (Figure 1C, right).



Figure 1. Overview of matched scRNA-seq and scATAC-seq workflow for patient tumors

(A) Cartoon showing patient tumor workflow. The female reproductive system cartoons (top) were created using BioRender.com.

(B) UMAP plot of all scRNA-seq cells color-coded by cell type across 11 patient tumors (left). UMAP plot of all scATAC-seq cells color-coded by inferred cell type

across 11 patient tumors (right). Color shades denote subclusters within each cell type.

(C) UMAP plot of scRNA-seq cells (left) and scATAC-seq cells (right) as shown in (B) but color-coded by patient of origin.

(D) Stacked bar charts showing contribution of each patient to each subcluster in scRNA-seq (left) and to each inferred cell type subcluster in scATAC-seq (right).
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Overall, we found ten general cell types in the entire cohort,

with 36 subclusters present in both modalities. Although these

subclusters vary in size, immune subclusters contain roughly

equal proportions of cells across all patients, while malignant

and fibroblast subclusters remain highly patient specific (Fig-

ure 1D; Figures S5 and S6). This is partly reflected by the unique-

ness of each inferred CNV profile from each tumor (Figures S2

and S3). Our observations are consistent with previous scRNA-

seq reports in OC (Izar et al., 2020), lung cancer (Lambrechts

et al., 2018), and nasopharyngeal cancer (Chen et al., 2020).

These patterns likely reflect biological overlap of non-malignant

cells across all patients and highlight the unique, and possibly

tractable, biological features of malignant cells within

each tumor.

Systematic discovery of cancer-specific distal
regulatory elements in human gynecologic cancers
We next explored the chromatin landscape to identify distal reg-

ulatory elements (dREs) that could help explain distinct biolog-

ical states of these malignant cells. To identify putative regulato-

ry elements across all scATAC-seq cells, we first carried out

peak calling within each cell type subcluster and used an itera-

tive overlap peak merging procedure to generate a peak-by-

cell matrix (Zhang et al., 2008; Granja et al., 2021; Liu, 2014;

Corces et al., 2018). In order to link variation in chromatin acces-

sibility to differences in gene expression, we executed a large-

scale peak-to-gene linkage analysis and developed a robust

empirical false discovery rate (eFDR) procedure for determining

statistically significant peak-to-gene associations in single-cell

data (STAR Methods) (Granja et al., 2021; Storey and Tibshirani,

2003).

Briefly, we aggregated the sparse peak counts within groups

of similar scATAC-seq cells, identified via k-nearest neighbors,

to generate more informative metacell observations for our

peak-to-gene correlation analysis. We then used the scATAC-

seq metacells (i.e., aggregates of similar cells) to compute the

correlation between accessibility of every peak and expression

of every gene in cis, imputed for each scATAC-seq cell (STAR

Methods). This peak-to-gene correlation analysis resulted in

2,748,906 peak-to-gene combinations in cis (Figure 2A, top; Fig-

ure S7A, top). To estimate the eFDR, we selected a raw p value

threshold of 1e�12 and recorded the number of observed peak-

to-gene associations with raw p values % 1e�12 (see STAR

Methods). The peak-to-gene correlation analysis was repeated

100 times under the permuted null condition where, for each per-

mutation, we shuffled scATAC-seq metacell labels to break the

link between peak accessibility and gene expression (Figure 2A,

bottom; Figure S7A, bottom). For every permutation, there was

less correlation between peak-to-gene pairs compared with

observed data, and the raw p value distribution was near uni-

form. The eFDR was then calculated by dividing the median

number of null peak-to-gene associations with raw p values %

1e�12 by the number of observed associations with raw p

values% 1e�12. These data highlight the genuine biological re-

lationships between peak accessibility and gene expression in

the observed data (Figure 2A; Figure S7; STAR Methods).

The peak-to-gene correlation analysis revealed 345,791 sta-

tistically significant peak-to-gene links (p value % 1e�12,
4 Molecular Cell 81, 1–18, December 2, 2021
eFDR = 0.00014) (Data S1). To identify positive regulatory effects

(i.e., positive correlation between peak accessibility and

gene expression), we focused on peak-to-gene links with corre-

lations R 0.45 (n = 133,811). Most of these peak-to-gene links

involved intronic peaks (50.2%) and distal peaks (28.3%). Pro-

moter and exonic peak-to-gene links were lowest among this

set (11.3% and 10.2%, respectively) (Figure S7D). To unveil

distal regulatorymechanisms active within these gynecologic tu-

mors, we proceeded with the 37,833 distal peak-to-gene links in

our downstream analyses (Data S1). We further categorized

peak-to-gene links into 36 k-means clusters and observed highly

consistent patterns between inferred gene expression and linked

peak accessibility (Figure 2B). We refer to these linked distal

peaks as putative dREs. The majority of identified dREs are an-

notated by the Encyclopedia of DNA Elements Consortium

(ENCODE), providing support for our computational approach

and suggesting they are bona fide regulatory elements (ENCODE

Project Consortium, 2012; Moore et al., 2020a).

To identify dREs specific to cancer cells across all patients, we

extracted distal peaks from cancer-enriched k-means groups

and carried out a genomic interval overlap analysis with epige-

nomic profiles from non-cancer tissues (Figure 2C; Figures

S8A–S8E). We overlapped the genomic coordinates of our

14,043 cancer-enriched distal peaks with putative enhancer ele-

ments (defined by H3K27ac) active in cell lines derived from

normal ovarian surface epithelium and normal fallopian tube

secretory epithelium tissue (Coetzee et al., 2015). We also

screened against all existing ENCODE regulatory elements

(Moore et al., 2020a). The overlap analysis revealed 3,688 distal

peaks that are not present in normal ovarian surface epithelium,

normal fallopian tube secretory epithelium, or the ENCODE data-

base. Thus, these 3,688 distal peaks, participating in 5,827

peak-to-gene links, represent cancer-specific dREs (Data S1).

The remaining distal peaks (n = 22,166) represent regulatory

elements that are active in normal tissue.

To further characterize cancer-specific dREs, we quantified

the linked target genes per distal peak in both cancer-specific

and normal peak groups. Strikingly, the cancer-specific peaks

link to more genes (mean = 1.58) compared with the non-malig-

nant peaks (mean = 1.44) (p = 1.6e�05, Wilcoxon rank-sum test)

(Figure 2D; Figures S8F–S8I). Previous studies have proposed

similar estimates of the number of putative target genes per

dRE, and we anticipate this difference to be magnified in a larger

group of patients (Mills et al., 2020; Moore et al., 2020b; Corces

et al., 2018).

We found many salient instances of cancer-specific dREs

linked to upregulated genes in malignant cell populations

measured using scRNA-seq (Data S1). For example, the hall-

markmTORpathway regulatorRHEB is significantly upregulated

in the subcluster labeled as 3-ovarian cancer, which comes from

patient 7 diagnosed with endometrioid OC (Figure 2E; Table 1;

Table S1) (Yang et al., 2017). This subcluster of malignant cells

also shows positive enrichment for the mTOR pathway gene

signature (Liberzon et al., 2015) (see STAR Methods) (p < 0.01,

Kruskal-Wallis test). We found strong chromatin accessibility

signal at the RHEB promoter across all malignant populations,

but we highlight the marked increases in accessibility of four

cancer-specific dREs enriched in the 3-ovarian cancer



Figure 2. Systematic identification of cancer-specific distal regulatory elements

(A) Cartoon showing peak-to-gene correlation analysis with an eFDR (top). Histograms of correlation values and raw p values for n = 2,748,906 peak-to-gene link

tests (middle) and peak-to-gene link tests under the null condition (bottom). Dashed red lines represent the alpha threshold or raw p value cutoff of 1e�12 for

calling statistically significant peak-to-gene links.

(legend continued on next page)
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subcluster (Figure 2E). Together, this offers a possible mecha-

nism for mTOR pathway dysregulation through oncogenic

dREs enriched in malignant cells of endometrioid OC. Indeed,

highRHEB expression is prognostic of worse outcome in OC pa-

tients (Figure 2F; Table S4) (Gyorffy et al., 2012).

Our eFDR peak-to-gene linkage and genomic interval overlap

analyses revealed additional putative cancer-specific dREs for

clinical biomarkers CA125 and CD117 in EC/OC and GIST,

respectively (Data S1). These genes are also predictive of poor

survival in OC and gastric cancer, respectively (Table S4).

Together with our findings for RHEB, this suggests that molecu-

lar rewiring of dREs play critical roles in the pathogenesis of gy-

necologic malignancies and have important clinical implications

(Gyorffy et al., 2012; Szász et al., 2016).

To transition from the full cohort analysis into cancer type-spe-

cific analyses, and identify even finer transcriptomic and epige-

nomic differences, we performed pseudo-bulk clustering

analysis (Kimes et al., 2017) (STAR Methods). This analysis re-

vealed two groups of patient tumors that were conserved across

data types: patients 1–5 (endometrioid EC [EEC]) and patients 8

and 9 (high-grade serous OC [HGSOC]). These groupings reflect

the original histological classifications in Table 1. Interestingly,

tumors from patient 6 and patient 10 are more similar to the

HGSOC tumors in terms of pseudo-bulk RNA-seq but are

more similar to EEC tumors in terms of pseudo-bulk ATAC-seq

(Figure S9).

Cancer-specific regulatory mechanisms in EEC
EC is the most common gynecologic malignancy in the United

States, and the endometrioid histologic type accounts for a ma-

jority of cases (Siegel et al., 2021; Ritterhouse and Howitt, 2016).

To analyze the EEC patient cohort, we merged all cells from pa-

tients 1–5, resulting in 32,234 cells profiled using scRNA-seq and

32,155 cells profiled using scATAC-seq (STAR Methods). We

found that cells clustered mainly by cell type and not by patient,

suggesting batch effects were not a major confounder (Figures

3A and 3B; Figure S10). Overall, we observed eight general cell

types across patients 1–5 with 29 subclusters in scRNA-seq

and 28 subclusters in scATAC-seq. In scATAC-seq, the 20-fibro-

blast subcluster had only 10 cells and was therefore removed

from downstream analysis. We next screened for malignant sub-
(B) Row-scaled heatmaps of statistically significant distal peak-to-gene links. Eac

peak (right). Cancer-enriched k-means clusters are marked in red. Distal peaks pa

presented in (C).

(C) Venn diagram showing the number of cancer-specific distal peaks (orange) af

the genomic coordinates of normal ovarian surface epithelium enhancer elements

annotations (gray).

(D) Bar charts comparing proportion of distal peaks per number of linked genes be

chart comparing mean number of linked genes per distal peak between cancer-s

statistically significant difference (Wilcoxon rank-sum test). Error bars represent

(E) Browser track showing the accessibility profile at the RHEB locus across all m

Putative cancer-specific dREs for RHEB are highlighted by light blue shadows. M

Asterisks denote a statistically significant difference in gene expression between

log fold change [FC] > 1.0, Bonferroni-corrected p < 0.01, Wilcoxon rank-sum te

(right). Asterisks denote statistically significant differences inmTOR pathway exp

element annotations, as used in (C), are shown below the browser track. Peak-to

expression (bottom).

(F) Kaplan-Meier survival curve based on progression-free survival for 614 OC p
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clusters using the EC biomarkers MUC16/CA125 and WFDC2/

HE4 (Figure S11) (Dong et al., 2017; Li et al., 2009). Again, we

observed that fibroblast/stromal and EC subclusters were highly

patient specific (Figure 3C; Figure S10). We also highlight that

four subclusters are almost entirely formed by cells coming

from patient 3 (6-,14-,15-, and 21-endometrial cancer), suggest-

ing a high degree of intratumoral heterogeneity within this tumor.

Next, we wanted to better understand transcriptional differ-

ences between these EEC subclusters and if any patterns could

be explained by variation in chromatin accessibility. We per-

formed the cancer-specific peak-to-gene linkage analysis in

the EEC cohort and identified 324,626 peak-to-gene links (p %

1e�12, eFDR = 5.5e�5), of which 34,231 were distal with corre-

lations R 0.45 (Data S1; Figure 3D). Comparison with normal

reference epigenomic profiles identified 1,943 putative cancer-

specific distal peaks forming 2,950 cancer-specific peak-to-

gene links (Data S1) (Moore et al., 2020a; Coetzee et al., 2015).

Interestingly, we observe the same increase in number of genes

linked to cancer-specific peaks relative to normal peaks for the

EEC patient cohort (p = 4.23e�05, Wilcoxon rank-sum test).

To evaluate if these dREs were shared across EEC patients,

we repeated the peak-to-gene linkage analysis for each patient

individually using the same set of peaks from the full EEC anal-

ysis (Figure S12A). We asked what proportion of the 34,231

dREs, or peak-gene pairs, were recoverable in each patient.

The patient-specific analyses from patients 1–5 recovered

49.68%, 52.03%, 40.91%, 62.17%, and 52.32% of the original

EEC dREs, respectively (Figure S12B). Moreover, we found

that 17.23% of the original EEC dREs were recovered in every

patient-specific analysis. Thus, multiple patients participate in

these putative regulatory relationships.

Next, we wanted to investigate the extent to which cancer-

specific dREs are rewired in malignant cell populations relative

to normal cell populations of the EEC cohort. We repeated our

peak-to-gene linkage analysis for malignant and non-malignant

fractions of the EEC cohort independently and assessed how

many cancer-specific dREswere recovered in each fraction (Fig-

ure 3C; Figure S13). We identified 27,738 dREs in the malignant-

specific analysis and 34,172 dREs in the non-malignant analysis

(Figure S13B, top). The malignant-specific analysis recovered

more of the 2,950 cancer-specific dREs than the non-malignant
h row represents expression of a gene (left) correlated to accessibility of a distal

rticipating in cancer-enriched k-means groups are used in the overlap analysis

ter overlapping the genomic coordinates of cancer-enriched distal peaks with

, normal fallopian tube enhancer elements, and all ENCODE regulatory element

tween cancer-specific (orange) and normal (gray) distal peak groups (left). Bar

pecific (orange) and normal (gray) distal peak groups (right). Asterisks denote a

± 1 SEM.

alignant subclusters (orange) and select non-malignant subclusters (gray) (left).

atching scRNA-seq expression of RHEB is shown for each subcluster (middle).

cells in the 3-ovarian cancer subcluster and all remaining subclusters (average

st). Relative expression of mTOR pathway members is shown in the boxplot

ression across all subclusters (p < 0.01, Kruskal-Wallis test). Known regulatory

-gene loops show the correlation value between peak accessibility and RHEB

atients stratified by high and low RHEB expression.
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analysis (47.5% versus 6.3%, respectively) (Figure S13B, bot-

tom). These data suggest that the distal regulatory landscape

is rewired in malignancy relative to normal cell states.

We then identified three clear examples of cancer-specific

dREs that explain upregulated gene expression in malignant

populations relative to normal cell populations in the EEC cohort.

For example, there is increased IMPA2 expression in the malig-

nant fraction of the EEC cohort and increased chromatin acces-

sibility of a cancer-specific dRE within the IMAP2 locus (Fig-

ure 3E). IMPA2 encodes the inositol monophosphatase 2

protein involved in phosphatidylinositol signaling. Although few

works have reported a role for IMPA2 in cancer, high IMPA2

expression is predictive of poor survival in uterine corpus endo-

metrioid carcinoma (UCEC) patients (Figure 3F; Table S4) (Zhang

et al., 2020; Nagy et al., 2021; Ohnishi et al., 2007).We also found

three clear cancer-specific dREs linked to increased SOX9

expression in the malignant fraction of the EEC cohort (Data

S1). As high SOX9 expression portends a worse outcome for

UCEC patients and SOX9 has been implicated in formation of

endometrial hyperplastic lesions in EC, these data may offer in-

sights into non-coding mechanisms behind carcinogenesis of

the endometrium (Table S4) (Saegusa et al., 2012; Gonzalez

et al., 2016; Nagy et al., 2021). Finally, we note thatCD24 is high-

ly expressed in the malignant fraction of the EEC cohort, and we

highlight three cancer-specific dREs linked to CD24 expression

(Data S1). CD24 is reported to be an effective differentiator be-

tween endometrial hyperplastic lesions and EC (Nagy et al.,

2021; Kim et al., 2009). Additionally, increased CD24 expression

offers resistance to chemotherapeutic agents and facilitates im-

mune escape from macrophage phagocytosis in endometrial

carcinoma cells (Lin et al., 2021; Pandey et al., 2010). These clin-

ically relevant oncogenic dREs are just a snapshot of the altered

regulatory landscape in EEC. We have tabulated all significant

cancer-specific dRE-gene interactions in Data S1.

Cancer cell populations of HGSOC acquire cancer-
specific dREs for genes involved in drug resistance
HGSOC is the most common histologic type of OC and is char-

acterized by high copy number alterations and few driver muta-

tions, which is thought to account for the clinical aggressiveness

of this disease (Coward et al., 2015; Macintyre et al., 2018). To
Figure 3. A cancer-specific distal regulatory element helps drive IMP

cohort

(A) UMAP plot of scRNA-seq cells color-coded by cell types found in patients 1–5

patients 1–5 (right).

(B) UMAP plot of scRNA-seq cells as shown in (A) but color-coded by patient of o

patient of origin (right).

(C) Stacked bar charts showing contribution of each patient to each subcluster.

(D) Row-scaled heatmaps of statistically significant distal peak-to-gene links wher

distal peak (right). Select k-means clusters containing IMPA2 are marked in red

(E) Browser track showing the accessibility profile at the IMPA2 locus across all ce

or non-malignant (gray). Putative cancer-specific dRE of IMPA2 is highlighted by th

subclusters (right). Asterisks denote a statistically significant difference in gene e

FC = 0.23, Bonferroni-corrected p < 0.01,Wilcoxon rank-sum test). Known regulat

tube, and ENCODE, are shown below the browser track. Peak-to-gene loops s

(bottom).

(F) Kaplan-Meier survival curve on the basis of recurrence-free survival for 422 ut

IMPA2 expression.
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analyze the HGSOC patient cohort, we merged all cells from pa-

tients 8 and 9, resulting in 13,646 cells profiled by scRNA-seq

and 17,677 cells profiled by scATAC-seq (STARMethods). Over-

all, we observed six general cell types across patients 8 and 9

with 24 subclusters in scRNA-seq and 19 subclusters in scA-

TAC-seq. In scATAC-seq, five cell type subclusters had fewer

than 30 cells and were therefore removed from downstream

analysis (Figures 4A and 4B; Figure S14).We identifiedmalignant

subclusters using inferred CNV events and expression of the OC

biomarkers MUC16/CA125 and WFDC2/HE4 (Figure S15) (Li

et al., 2009; Duffy et al., 2005; Hellström et al., 2003; Sturgeon

et al., 2008). Again, we observed that the fibroblast/stromal

andOC subclusters are highly patient specific, reflecting the bio-

logical uniqueness of malignant and fibroblast populations from

each patient tumor as partly supported by their distinct inferred

CNV profiles (Figures S3 and S14). Of note, patient 9 has four

malignant subclusters, suggesting a high degree of intratumoral

heterogeneity within this tumor (Figure S14).

To understand the regulatory landscape of these subclusters,

we carried out the peak-to-gene linkage analysis to identify pu-

tative cancer-specific dREs driving the transcriptional profiles

of malignant populations. This analysis identified 486,293 statis-

tically significant (p % 1e�12, eFDR = 2.1e�06) peak-to-gene

links, of which 62,087 were distal with correlations R 0.45

(Data S1; Figure 4C). The genomic interval overlap analysis iden-

tified 5,202 putative cancer-specific distal peaks forming 11,134

cancer-specific peak-to-gene links (Data S1) (Moore et al.,

2020a; Coetzee et al., 2015). Overall, cancer-specific peaks

linked to more genes on average relative to the normal peaks

for the HGSOC cohort (p = 6.6e�12, Wilcoxon rank-sum test).

We again investigated the extent to which the cancer-specific

dREs are rewired in malignant cell populations of the HGSOC

cohort and found that a malignant-specific analysis recovered

more of the 11,134 cancer-specific dREs than the non-malignant

analysis (63.6% versus 3.9%, respectively) (Figure S16).

Of the 11,134 cancer-specific dREs in the HGSOC cohort, we

highlight two examples of cancer-specific gene regulation in the

malignant fraction. PI3, encoding peptidase inhibitor 3 (Elafin

protein), is highly expressed in the malignant fraction and its up-

regulation can be explained by four cancer-specific dREs (Data

S1). Not only is PI3 predictive of poor survival in serous OC
A2 expression within the endometroid endometrial cancer patient

(left). UMAP plot of scATAC-seq cells color-coded by inferred cell type across

rigin (left). UMAP plot of scATAC-seq cells as shown in (A) but color-coded by

e each row represents expression of a gene (left) correlated to accessibility of a

text.

ll type subclusters (left). Subclusters are color-coded either malignant (orange)

e light blue shadow.Matching scRNA-seq expression of IMPA2 is shown for all

xpression between cells in marked subclusters when aggregated (average log

ory element annotations for normal ovarian surface epithelium, normal fallopian

how the correlation value between peak accessibility and IMPA2 expression

erine corpus endometrial carcinoma (UCEC) patients stratified by high and low



Figure 4. Malignant populations of the high-grade serous ovarian cancer patient cohort acquire novel enhancer-like elements that drive

LAPTM4B expression

(A) UMAP plot of scRNA-seq cells color-coded by cell types found in patients 8 and 9 (left). UMAP plot of scATAC-seq cells color-coded by inferred cell type

across patients 8 and 9 (right).

(legend continued on next page)
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patients, it is implicated in OC chemoresistance and confers OC

cells a proliferative advantage through activation of MEK-ERK

signaling (Table S4) (Gyorffy et al., 2012; Labidi-Galy et al.,

2015; Clauss et al., 2010; Wei et al., 2012; Williams et al., 2005).

We also highlight two cancer-specific dREs that were strongly

associatedwith increased LAPTM4B expression in themalignant

fraction of the HGSOC patient cohort (Figure 4D). LAPTM4B is

predictive of poor survival in OC patients and has been reported

as a potent facilitator of chemotherapeutic drug efflux as well as

PI3K/AKT signaling (Figure 4E; TableS4) (Li et al., 2010; Tan et al.,

2015;Gyorffy et al., 2012).We labeled LAPTM4B cancer-specific

dREs as enhancer 2 (Enh2) and enhancer 4 (Enh4), and we note

that there are three additional dREs annotated within this locus

(Enh1, 3, and 5). To interrogate TF occupancy at these dREs,

we performed find individual motif occurrences (FIMO) analysis

for each putative enhancer region using the patient 9 DNA

sequence after accounting for single-nucleotide variants in the

malignant fraction (subclusters 0-, 7-, 11-, and 16-ovarian can-

cer) of patient 9 (Figure 4F; STAR Methods) (Bailey et al., 2009,

2015;Grant et al., 2011). Interestingly, cells from thepatient 9ma-

lignant fraction harbor a SNP (rs10955131) within Enh2, but we

are unable to determine if this mutation is somatically acquired,

as we did not achieve sufficient read depth in normal immune

cells at this particular genomic region to perform variant calling

(Figure S17). We observed statistically significant TF motif

matcheswithin each putative enhancer region and further ranked

them by scRNA-seq TF expression within the patient 9malignant

fraction (Figure 4F; TableS5). Of note,we foundYY1motifswithin

Enh2, Enh4, and the LAPTM4B promoter region, suggesting

these cancer-specific enhancers participate in active enhancer-

promoter connections within malignant cells of patient 9 (Wein-

traub et al., 2017).

Functional validation of LAPTM4B enhancers and
predicted TF regulators
To further validate our dRE identification pipeline, we conducted

experiments to confirm these dREs and TFs as bona fide en-

hancers of LAPTM4B expression. First, we used dCas9-KRAB-

mediated CRISPR interference assays, in the HGSOC cell line

OVCAR3, to inhibit the most highly active cancer-specific dRE

(Enh2) and lineage-specific dRE (Enh3) in the LAPTM4B locus

(Figures 5A–5C; STAR Methods) (Fulco et al., 2016; Larson

et al., 2013; Gilbert et al., 2013; Qi et al., 2013). OVCAR3 cells

stably expressing dCas9-KRAB were transfected with single
(B) UMAP plot of scRNA-seq cells as seen in (A) but color-coded by patient of origi

of origin (right).

(C) Row-scaled heatmaps of statistically significant distal peak-to-gene links wher

distal peak (right). Select k-means clusters containing LAPTM4B are marked in r

(D) Browser track showing the accessibility profile at the LAPTM4B locus across

non-malignant (gray). Putative dREs of LAPTM4B are highlighted by light blue sh

(right) for all subclusters. Asterisks denote a statistically significant difference in ge

log FC = 1.77, Bonferroni-corrected p < 0.01, Wilcoxon rank-sum test). Known

fallopian tube, and ENCODE, are shown below the browser track. Peak-to-gene

expression (bottom).

(E) Kaplan-Meier survival curve on the basis of overall survival for 1,656 OC patie

(F) Summary cartoon and table of find individual motif occurrences (FIMO) predic

bottom, respectively). Matching scRNA-seq TF expression in the malignant frac

matches identified by the FIMO software were defined as a Benjamini-Hochberg
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guide RNAs (sgRNAs) targeting Enh2 and Enh3 to induce local

chromatin repression (Figure 5B; STAR Methods). We then

measured the consequences on gene expression and found

that LAPTM4B was significantly reduced when targeting Enh2

and Enh3 (Figure 5D). Thus, we conclude that Enh2 and Enh3

are bona fide enhancers of LAPTM4B, providing support for

the remaining dREs identified throughout this study.

We next validated predicted TF regulators of LAPTM4B via

RNAi-mediated knockdown in OVCAR3 cells (Figure 5E). We

measured the expression of LAPTM4B after knockdown of each

predicted TF regulator: YY1, CEBPD, and KLF6. Indeed, we

observed a statistically significant decrease in LAPTM4B expres-

sion when targeting YY1,CEBPD, and KLF6 but not when target-

ing the negative control, GAPDH (Figures 5E–5H). Thus, YY1,

CEBPD, and KLF6 are bona fide TF regulators of LAPTM4B and

provide confidence for our TF predictions (Figure 5E).

Linking dREs to TF activity in human gynecologic
malignancies
After identifying dREs that may play critical roles in cancer pro-

gression, we interrogated trans-acting factors present at these

dREs across the entire dataset to better understand the regula-

tory logic of these tumors. We adapted our published method

called Total Functional Score of Enhancer Elements (TFSEE) to

predict which TFs are enriched at active dREs (enhancer-like el-

ements) within malignant cell types (Figure 6A; STAR Methods)

(Malladi et al., 2020; Franco et al., 2018). By adapting this

method to matched scRNA-seq and scATAC-seq, TFSEE allows

concurrent assessment of TF expression, enhancer activity,

enhancer location, and TFs present at enhancers. Across the

full patient cohort, 11 malignant cell type subclusters were cho-

sen for TFSEE analysis on the basis of patient specificity, inferred

CNV events, and/or cancer biomarker expression patterns (Fig-

ure S18). We conducted the TFSEE analysis and observed that

the malignant cell types tend to cluster by patient and by cancer

type (Figure 6B). To further prioritize enriched TFs across active

enhancer elements, we highlighted each TF by its predicted

druggability status (binary) as determined by the canSAR data-

base through structure-based and ligand-based assessments

(Tym et al., 2016; Mitsopoulos et al., 2021).

To exemplify the utility of TFSEE with single-cell data, we

investigated intratumoral heterogeneity of two patients with

rare histological subtypes. For patient 6, diagnosed as EC of se-

rous histology that metastasized to the ovary, there were two
n (left). UMAP plot of scATAC-seq cells as seen in (A) but color-coded by patient

e each row represents expression of a gene (left) correlated to accessibility of a

ed text.

all subclusters (left). Subclusters are color-coded either malignant (orange) or

adows. Matching scRNA-seq expression of LAPTM4B is shown in the boxplot

ne expression between cells in marked subclusters when aggregated (average

regulatory element annotations for normal ovarian surface epithelium, normal

loops show the correlation value between peak accessibility and LAPTM4B

nts stratified by high and low LAPTM4B expression.

tions within enhancer 2, enhancer 4, and LAPTM4B promoter (top, middle, and

tion of patient 9 is shown in the boxplots (right). Statistically significant motif

corrected p value (i.e., q value) < 0.10.



Figure 5. Functional validation of cancer-specific LAPTM4B regulatory model in high-grade serous ovarian cancer cells

(A) Browser track showing the accessibility profile at the LAPTM4B locus, as in Figure 4D, but between malignant (orange) and non-malignant (gray) fractions of

the HGSOC patient cohort. Coverage is normalized by sequencing depth as well as reads in transcription start site (TSS) regions. Known regulatory element

annotations for normal ovarian surface epithelium, normal fallopian tube, and ENCODE, are shown below the browser track.

(B) Cartoon of dCas9-KRAB-mediated CRISPR interference.

(C) Western blot of OVCAR3 cells stably expressing dCas9-KRAB.

(D) qRT-PCR results showing expression of LAPTM4B after dCas9-KRAB-mediated repression of enhancer 2 and enhancer 3. Expression is shown as fold

change relative to ACTB expression.

(E) Cartoon depicting inferred TF-mediated enhancer-promoter connections.

(F) qRT-PCR results of LAPTM4B expression after small interfering RNA (siRNA)-mediated knockdown ofGAPDH and predicted TF regulators: YY1,CEBPD, and

KLF6. Expression is shown as fold change relative to ACTB expression.

(G) qRT-PCR results of expression of TF regulators after siRNA knockdown. Expression is shown as fold change relative to ACTB expression.

(H) qRT-PCR results of expression of GAPDH after siRNA-mediated knockdown of GAPDH and TF regulators. Expression is shown as fold change relative to

ACTB expression.

Data in (D), (F), (G), and (H) are shown as mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, one-tailed Welch’s t test.
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distinct tumor subclones (19- and 34-endometrial cancer)

highlighted by their distinct CNV profiles (Figure 6C; Figure S2;

Table 1; Table S1). We visualized the differences in TF activity

between these two subclones and observed several notable

TFs enriched in each subclone (Figure 6C). Of note, we found

MAFB to be enriched in the 19-endometrial cancer subclone of

the patient 6 tumor relative to the 34-endometrial cancer sub-

clone. Moreover, MAFB is predicted to be druggable by

ligand-based assessment according to the canSAR database

(Mitsopoulos et al., 2021; Tym et al., 2016). We also observed

STAT1 is enriched in the 34-endometrial cancer subclone of

the patient 6 tumor (Mitsopoulos et al., 2021; Tym et al., 2016).
These differences in TF activity may provide valuable insight

into intratumoral heterogeneity of serous EC.

We also chose to investigate the two histopathological frac-

tions (16- and 17-ovarian cancer) of the patient 10 tumor diag-

nosed as an ovarian carcinosarcoma (Table 1; Table S1).

Although these two histopathological fractions have similar in-

ferred CNV profiles, a pseudo-bulk gene-set variation analysis

(GSVA) across all malignant cell types revealed a higher enrich-

ment of epithelial-to-mesenchymal transition (EMT) and Invasion

gene signatures within the 16-ovarian cancer subcluster (Figures

S3 and S18). This suggests the 16-ovarian cancer subcluster

represents the sarcoma fraction, while the 17-ovarian cancer
Molecular Cell 81, 1–18, December 2, 2021 11
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subcluster represents the carcinoma fraction. These fraction

identity assignments are also supported by clustering of 16-

ovarian cancer with the GIST subclusters, 0-/27-GIST, and clus-

tering of 17-ovarian cancer with the HGSOC subclusters, 9-/10-

ovarian cancer (Figure 6B). To uncover differences in TF activity

between the carcinoma fraction (17-ovarian cancer) and sar-

coma fraction (16-ovarian cancer) of the patient 10 tumor, we

visualized the differences in scaled TFSEE score and identified

a number of TFs enriched in each fraction. ZEB1 was enriched

in the sarcoma fraction relative to carcinoma fraction (Figure 6D)

(Mitsopoulos et al., 2021; Tym et al., 2016). This result is in line

with ZEB1’s role in EMT and repression of epithelial-specific

genes (Sánchez-Tilló et al., 2011; Watanabe et al., 2019). We

also observed the epithelial-specific TF ELF3 enriched in the car-

cinoma fraction relative to the sarcoma fraction (Figure 6D) (Sen-

gez et al., 2019; Brembeck et al., 2000). These distinct TF activity

profiles, along with the shared inferred CNV events between the

histopathological fractions of the ovarian carcinosarcoma, may

help researchers and clinicians better understand the etiology

of gynecologic carcinosarcomas (Barker and Scott, 2020; Kos-

tov et al., 2020).

Our TFSEE analysis allowed us to make additional compari-

sons of serous versus endometrioid OC, serous versus EEC,

and GIST versus serous OC (Figure S19). In each case, we iden-

tify important TF regulators enriched in either histologic type. Of

note, we observed RARGenriched in serousOC relative to endo-

metrioid OC, MAFB enriched in serous EC relative to EEC, and

ZEB1 enriched in GIST relative to serous OC (Figures S19B–

S19D). Overall, our TFSEE analysis is a novel framework in sin-

gle-cell genomics that reveals robust inferences of TF activity

coupled to TF expression. This strategy attempts to lower the

false positive rate of motif-based TF predictions by enriching

for TFs with non-zero expression and giving lower weight to

TFs with zero or negligible expression. In some instances,

some TFs can still be functional without being actively tran-

scribed. Therefore, we chose to explore an alternate version of

the TFSEE analysis that is agnostic to TF expression by omitting

the last element-wise multiplication with the TF expression ma-

trix and found similar results (Figure S20).

DISCUSSION

To date, the standard of care for OC and EC is a combination of

surgery, chemotherapy, and radiation. Despite these aggressive

treatments, most women with advanced stage EC and OC will
Figure 6. Functional scoring of cell type-specific enhancer activity an

peutic targets across gynecologic malignancies
(A) Cartoon of matrix operations performed in the total functional score of enha

patient specificity were chosen for TFSEE analysis.

(B) Unsupervised hierarchical clustering heatmap of cell type normalized TFSEE

resents TF activity across cell type-specific enhancers enriched in each colum

druggable according to the canSAR database.

(C) Rank-ordered plot showing the difference in scaled TFSEE score for each T

representing serous EC. Each point represents a TF and is colored by predict

subclone 2) are labeled in light blue regions of the plot.

(D) Rank-ordered plot showing the difference in scaled TFSEE score for each TF b

representing carcinosarcoma OC. Each point represents a TF and is colored by pr

carcinoma) are labeled in light blue regions of the plot.
succumb to their disease, highlighting the need to develop better

targeted therapies. Our work represents a valuable multi-omic

resource that charts the transcriptional and regulatory landscape

of gynecologic tumors at single-cell resolution. Deconvolution of

this dataset identified novel mechanisms that facilitate tumori-

genesis and prioritized potential avenues for therapeutic inter-

vention that were hidden using bulk genomic approaches. We

also shed light on non-coding regulatory mechanisms for a num-

ber of clinically relevant biomarkers andmajor players involved in

cancer pathogenesis (Yang et al., 2017; Duffy et al., 2005; Dong

et al., 2017; Sturgeon et al., 2008; Sarlomo-Rikala et al., 1998).

Moreover, we anticipate that this dataset will help inspire novel

therapeutic treatment strategies in EC and/or OC by serving as

a reference for (1) clinicians in understanding intratumoral het-

erogeneity, (2) hypothesis generation in cancer biology, (3) cell

type annotation in future single-cell datasets, and (4) the devel-

opment of novel bioinformatic methods.

We reiterate four important findings from analyzing this single-

cell dataset. First, we demonstrated that cancer cells acquire de

novo non-coding dREs that modulate hallmark cancer path-

ways, including mTOR signaling, in a cancer-specific manner

(Figures 2, 3, 4, and 5; Data S1). This is consistent with recent

clinical trials testing mTOR inhibitors in combination therapy

for OC patients (Das et al., 2017; Westin, 2014; Banerji, 2014).

From this, we speculate that the mTOR-enriched patient 7 may

benefit from anmTOR inhibitor treatment, although further inves-

tigation is needed. Nonetheless, these data demonstrate impor-

tant non-coding mechanisms for how cancer cells may acquire

aggressive phenotypes due to changes in chromatin accessi-

bility and TF occupancy.

Moreover, cancer-specific dREs identified in each analysis

cohort linked to more target genes on average compared with

the lineage-specific dREs (Figure 2D). On the basis of our data,

we anticipate this trend to be even greater across a larger group

of patient tumors and posit that salient cancer-specific dREs

carry a higher ‘‘regulatory load’’ relative to dREs active in normal

tissues. This could be explained by alterations in topologically

associating domain boundaries and higher order chromatin

structure, but this warrants further investigation (Akdemir

et al., 2020).

Next, malignant populations within and between patient tu-

mors show substantial heterogeneity in chromatin accessibility

linked to transcriptional output (Figures 1, 2, 3, 4, 5, and 6).

This poses a challenging obstacle in EC and OC treatment and

highlights the importance of intratumoral heterogeneity and the
d their cognate transcription factors helps prioritize potential thera-

ncer elements (TFSEE) method. Only malignant cell type clusters with 100%

scores (n = 102 TFs across active enhancers). Each row of the heatmap rep-

n. Predicted druggability status for each TF is marked with druggable/not

F between subclone 1 (orange) and subclone 2 (blue) of the patient 6 tumor

ed druggability status. Notable TFs enriched in either condition (subclone 1/

etween carcinoma (pink) and sarcoma (green) fractions of the patient 10 tumor

edicted druggability status. Notable TFs enriched in either condition (sarcoma/
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growing need formore single-cell datasets of solid tumors, espe-

cially in response to chemotherapy. The extent to which malig-

nant cell populations can be described as distinct ‘‘cell types’’

or ‘‘cell states’’ remains elusive and inspires further study into

temporally regulated oncogenic regulatory elements and lineage

tracing of malignant cell populations (Clevers et al., 2017).

Last, our methodology to infer differential TF activity between

populations of malignant cells reveals another complex layer of

gene regulation that is repurposed in cancer cells (Figure 6; Fig-

ures S19 and S20). Our TFSEE analysis is a powerful tool that fa-

cilitates integration of scRNA-seq and scATAC-seq datasets to

interrogate complex mechanisms of gene regulation. This helps

prioritize TFs for follow up investigation and could help inspire

novel therapeutic avenues in gynecologic malignancies. As a

whole, this resource showcases important principles of gene

regulation and tumor biology determined through single-cell

multi-omic data.

Limitations of study
We recognize the true richness of the dataset cannot be exem-

plified here in full and that there are some limitations associated

with our approach. First, scRNA-seq and scATAC-seq libraries

were prepared for each tumor by independent sampling of the

cell suspension generated for each tumor. Although Seurat

version 3 allows robust alignment of cell types across datasets,

there are methods for profiling the transcriptome and chromatin

landscape within the same cell (Cao et al., 2018; Chen et al.,

2019; Ma et al., 2020). However, these methods have yet to

become widely accessible and come with their own set of tech-

nical nuances. Second, the number of cell type subclusters iden-

tified in the scRNA-seq data is dependent on user-defined pa-

rameters such as the number of PCs and clustering resolution

(Xu and Su, 2015; Stuart et al., 2019). Although we did not

explore all possible parameter sets, we note that characterizing

cell type composition of each tumor was not the main focus of

our study. Therefore, there may be even more complexity in

these single-cell data. Third, we realize that our Kaplan-Meier

survival analyses were derived from bulk measurements in

contrast to our single-cell data. Finally, we acknowledge that

our study was limited by a small number of patients with a mix

of histotypes, which could affect the generalizability of our

resource. However, we note that our requirement for treat-

ment-naive tumors prevented us from beingmore selective in re-

gard to tumor histology. All patient specimens presented are

treatment-naive tumors, which are difficult to procure because

the standard of care for HGSOC is shifting toward neo-adjuvant

treatment. Nonetheless, these data and the analyses described

herein represent a true baseline for these cancers, serving as a

foundation for defining the regulatory logic of malignant cells at

single-cell resolution.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
14 Molecular Cell 81, 1–18, December 2, 2021
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Human patient samples and tumor dissociation

B Cell culture

d METHOD DETAILS

B Single-cell sequencing

B Engineering OVCAR3-dCas9-KRAB cells

B sgRNA design and vector cloning

B CRISPRi

B RNAi

B qRT-PCR

B Single-cell RNA-seq quantification and quality con-

trol (QC)

B Single-cell RNA-seq normalization, feature selection

and clustering

B Inference of copy number variation (CNV) from single-

cell RNA-seq

B Single-cell RNA-seq cell type annotation

B Calculating enrichment of gene signatures in single-

cell RNA-seq

B Single-cell ATAC-seq quality control (QC)

B Single-cell ATAC-seq quantification, feature selection

and integration with single-cell RNA-seq

B Differential gene expression and differential peak

accessibility

B Kaplan-Meier (KM) survival curves

B Pseudo-bulk clustering of patient tumors

B Peak-to-gene correlation analysis with empirically

derived FDR (eFDR)

B Genomic coordinate overlap analysis with normal epi-

genome profiles

B Predicting transcription factor occupancy at select pu-

tative enhancer regions in high-grade serous

OC (HGSOC)

B Total functional score of enhancer elements (TFSEE)

d QUANTIFICATION AND STATISTICAL ANALYSIS
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

molcel.2021.10.013.
ACKNOWLEDGMENTS

We thank all patients and their families. We thank the University of North Car-

olina (UNC) Tissue Procurement Facility and UNC Translational Genomics

Core Facility for helping us acquire tumor specimens and sequence genomic

libraries. We thank Michele Hayward at the Office of Genomics Research for

help in navigating the institutional review board (IRB) and data submission pro-

cess. We thank Dr. Yuchao Jiang for helpful discussion on statistical consid-

erations needed for single-cell analysis. We thank Dr. Katie Hoadley and Dr.

Steve Marron for insights into statistical considerations regarding pseudo-

bulk clustering of patient tumors. We thank Olivia Brown in the UNC School

of Medicine for helpful discussion on the clinical interpretation of our single-

cell analysis. Finally, we thankmembers of the Franco lab for their helpful com-

ments and discussions. This work was supported by grants from the NIH/Na-

tional Cancer Institute (5-P50-CA058223-25), the Susan G. Komen Breast

Cancer Research Foundation (CCR19608601), and the V Foundation for

https://doi.org/10.1016/j.molcel.2021.10.013
https://doi.org/10.1016/j.molcel.2021.10.013


ll
Resource

Please cite this article in press as: Regner et al., A multi-omic single-cell landscape of human gynecologic malignancies, Molecular Cell (2021), https://
doi.org/10.1016/j.molcel.2021.10.013
Cancer Research (V2019-015) to H.L.F. Additional support was provided by

the She Rocks Foundation to V.L.B.-J.

AUTHOR CONTRIBUTIONS

H.L.F. conceived and supervised the study with input fromM.J.R., C.M.P., and

V.L.B.-J. Patient enrollment and tumor procurement was led by G.H. and

V.L.B.-J., who also provided clinical insights. K.W., S.G.-R., and A.T. carried

out tumor sample collection, developed the tissue dissociation protocol, and

generated scRNA-seq and scATAC-seq libraries. K.W. performed CRISPR-

and RNAi-based experiments. M.J.R. designed and performed the computa-

tional analysis with input from S.G.-R., A.T., J.S.P., R.M.-G., and H.L.F. The

TFSEE analysis was designed and performed byM.J.R. and V.S.M. Themanu-

script was written by M.J.R. and H.L.F. with input from all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: February 21, 2021

Revised: August 5, 2021

Accepted: October 13, 2021

Published: November 4, 2021

REFERENCES

Akdemir, K.C., Le, V.T., Chandran, S., Li, Y., Verhaak, R.G., Beroukhim, R.,

Campbell, P.J., Chin, L., Dixon, J.R., and Futreal, P.A.; PCAWG Structural

Variation Working Group; PCAWGConsortium (2020). Disruption of chromatin

folding domains by somatic genomic rearrangements in human cancer. Nat.

Genet. 52, 294–305.

American Cancer Society (2016). Cancer Facts & Figures (American Cancer

Society).

Aran, D., Looney, A.P., Liu, L., Wu, E., Fong, V., Hsu, A., Chak, S., Naikawadi,

R.P., Wolters, P.J., Abate, A.R., et al. (2019). Reference-based analysis of lung

single-cell sequencing reveals a transitional profibrotic macrophage. Nat.

Immunol. 20, 163–172.

Bailey, T.L., Boden, M., Buske, F.A., Frith, M., Grant, C.E., Clementi, L., Ren,

J., Li, W.W., and Noble, W.S. (2009). MEME SUITE: tools for motif discovery

and searching. Nucleic Acids Res. 37, W202–W208.

Bailey, T.L., Johnson, J., Grant, C.E., andNoble,W.S. (2015). TheMEMESuite.

Nucleic Acids Res. 43 (W1), W39–W49.

Banerji, U. (2014). A phase I trial of the combination of AZD2014 and weekly

paclitaxel. https://clinicaltrials.gov/show/NCT02193633.

Barker, H.E., and Scott, C.L. (2020). Genomics of gynaecological carcinosar-

comas and future treatment options. Semin. Cancer Biol. 61, 110–120.

Berger, A.C., Korkut, A., Kanchi, R.S., Hegde, A.M., Lenoir, W., Liu, W., Liu, Y.,

Fan, H., Shen, H., and Ravikumar, V. (2018). A comprehensive pan-cancermo-

lecular study of gynecologic and breast cancers. Cancer Cell 33, 690–705.e9.

Bioconductor Package Maintainer (2020). liftOver: changing genomic coordi-

nate systems with rtracklayer::liftOver. R package version 1.16.0. https://

www.bioconductor.org/packages/release/workflows/html/liftOver.html.

Brembeck, F.H., Opitz, O.G., Libermann, T.A., and Rustgi, A.K. (2000). Dual

function of the epithelial specific ETS transcription factor, ELF3, in modulating

differentiation. Oncogene 19, 1941–1949.

Buenrostro, J.D., Wu, B., Litzenburger, U.M., Ruff, D., Gonzales, M.L., Snyder,

M.P., Chang, H.Y., and Greenleaf, W.J. (2015). Single-cell chromatin accessi-

bility reveals principles of regulatory variation. Nature 523, 486–490.

Cancer Genome Atlas Research Network (2011). Integrated genomic analyses

of ovarian carcinoma. Nature 474, 609–615.

Cao, J., Cusanovich, D.A., Ramani, V., Aghamirzaie, D., Pliner, H.A., Hill, A.J.,

Daza, R.M., McFaline-Figueroa, J.L., Packer, J.S., Christiansen, L., et al.

(2018). Joint profiling of chromatin accessibility and gene expression in thou-

sands of single cells. Science 361, 1380–1385.
Chen, B., Gilbert, L.A., Cimini, B.A., Schnitzbauer, J., Zhang, W., Li, G.W.,

Park, J., Blackburn, E.H., Weissman, J.S., Qi, L.S., and Huang, B. (2013).

Dynamic imaging of genomic loci in living human cells by an optimized

CRISPR/Cas system. Cell 155, 1479–1491.

Chen, S., Lake, B.B., and Zhang, K. (2019). High-throughput sequencing of the

transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol.

37, 1452–1457.

Chen, Y.-P., Yin, J.-H., Li, W.-F., Li, H.-J., Chen, D.-P., Zhang, C.-J., Lv, J.-W.,

Wang, Y.-Q., Li, X.-M., Li, J.-Y., et al. (2020). Single-cell transcriptomics re-

veals regulators underlying immune cell diversity and immune subtypes asso-

ciated with prognosis in nasopharyngeal carcinoma. Cell Res. 30, 1024–1042.

Clauss, A., Ng, V., Liu, J., Piao, H., Russo, M., Vena, N., Sheng, Q., Hirsch,

M.S., Bonome, T., Matulonis, U., et al. (2010). Overexpression of Elafin in

ovarian carcinoma is driven by genomic gains and activation of the nuclear fac-

tor kappaB pathway and is associated with poor overall survival. Neoplasia 12,

161–172.

Clevers, H., Rafelski, S., Elowitz, M., Klein, A., Shendure, J., Trapnell, C., Lein,

E., Lundberg, E., Uhlen, M., and Martinez-Arias, A. (2017). What is your con-

ceptual definition of ‘‘cell type’’ in the context of a mature organism? Cell

Syst. 4, 255–259.

Cochrane, D.R., Campbell, K.R., Greening, K., Ho, G.C., Hopkins, J., Bui, M.,

Douglas, J.M., Sharlandjieva, V., Munzur, A.D., Lai, D., et al. (2020). Single cell

transcriptomes of normal endometrial derived organoids uncover novel cell

type markers and cryptic differentiation of primary tumours. J. Pathol. 252,

201–214.

Coetzee, S.G., Shen, H.C., Hazelett, D.J., Lawrenson, K., Kuchenbaecker, K.,

Tyrer, J., Rhie, S.K., Levanon, K., Karst, A., Drapkin, R., et al.; Ovarian Cancer

Association Consortium, The Consortium of Investigators of Modifiers of

BRCA1/2; Ovarian Cancer Association Consortium The Consortium of

Investigators of Modifiers of BRCA1/2 (2015). Cell-type-specific enrichment

of risk-associated regulatory elements at ovarian cancer susceptibility loci.

Hum. Mol. Genet. 24, 3595–3607.

Concordet, J.P., and Haeussler, M. (2018). CRISPOR: intuitive guide selection

for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids

Res. 46 (W1), W242–W245.

Corces, M.R., Granja, J.M., Shams, S., Louie, B.H., Seoane, J.A., Zhou, W.,

Silva, T.C., Groeneveld, C., Wong, C.K., Cho, S.W., et al.; Cancer Genome

Atlas Analysis Network (2018). The chromatin accessibility landscape of pri-

mary human cancers. Science 362, eaav1898.

Coward, J.I., Middleton, K., and Murphy, F. (2015). New perspectives on tar-

geted therapy in ovarian cancer. Int. J. Womens Health 7, 189–203.

Cusanovich, D.A., Daza, R., Adey, A., Pliner, H.A., Christiansen, L.,

Gunderson, K.L., Steemers, F.J., Trapnell, C., and Shendure, J. (2015).

Multiplex single cell profiling of chromatin accessibility by combinatorial

cellular indexing. Science 348, 910–914.

Danecek, P., and McCarthy, S.A. (2017). BCFtools/csq: haplotype-aware

variant consequences. Bioinformatics 33, 2037–2039.

Das, A., Reis, F., Maejima, Y., Cai, Z., and Ren, J. (2017). mTOR signaling in

cardiometabolic disease, cancer, and aging. Oxid. Med. Cell. Longev. 2017,

6018675.

Davidson, S., Efremova, M., Riedel, A., Mahata, B., Pramanik, J., Huuhtanen,

J., Kar, G., Vento-Tormo, R., Hagai, T., Chen, X., et al. (2020). Single-cell RNA

sequencing reveals a dynamic stromal niche that supports tumor growth. Cell

Rep. 31, 107628.

DePasquale, E.A.K., Schnell, D.J., Van Camp, P.J., Valiente-Alandı́, Í., Blaxall,
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Hector L.

Franco (hfranco@med.unc.edu).

Materials availability
Plasmids generated in this study are available upon request.

Data and code availability
d Processed single-cell RNA-seq data and single-cell ATAC-seq have been deposited at GEO (https://www.ncbi.nlm.nih.gov/

geo/) under the accession number GEO: GSE173682 and are publicly available as of the date of publication. Raw data (10x

FASTQs) will be available with controlled access via dbGAP under the accession number dbGAP: phs002340.v1.p1 (https://

www.ncbi.nlm.nih.gov/gap/).

d All original code has been deposited on the Zenodo platform (https://doi.org/10.5281/zenodo.5546110) and is publicly avail-

able at the Github repository scENDO_scOVAR_2020 (https://github.com/RegnerM2015/scENDO_scOVAR_2020).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact (hfranco@

med.unc.edu).
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human patient samples and tumor dissociation
Eleven, treatment naive, Ovarian and Endometrial cancer patients were enrolled in the ‘‘Genomics of Ovarian and Endometrial Can-

cers’’ study at the UNCCancer Hospital (IRB Protocol 18-3198) and underwent debulking surgery with curative intent to remove their

tumors (Table 1; Table S1). Tumor specimens were sectioned for pathology review and the remaining tissues were de-identified and

collected for this study through UNC’s Tissue Procurement Facility. To minimize the time elapsed between the surgical removal of

tumor tissue and processing for single-cell genomics, we established an efficient pipeline between the medical professionals (sur-

geon/clinical research coordinator/clinical pathologist), the coordinating team (project managers/pathology technician) and our labs’

research technicians before procedure day. The tumor specimens were never frozen or fixed in anyway and transported immediately

after surgical resection to the lab on ice in media containing DMEM/F12 media (GIBCO) + 1% Penicillin/Streptomycin (Corning).

Before dissociation, tumor samples were weighed. Tissue mass varied between 0.5 g and 4.68 g. Tumor specimens were then

minced using two razor blades and digested overnight in 20-30 mL DMEM/F12 + 5% FBS, 15mM HEPES (GIBCO), 1x Glutamax

(GIBCO), 1x Collagenase/Hyaluronidase (StemCell Technologies, 07912), 1%Penicillin/Streptomycin (Corning), and 0.48 mg/mLHy-

drocortisone (Stem Cell Technologies, 74144) on a stir plate at 37C and 180 rpm. For ovarian tumors, Gentle Collagenase/Hyaluron-

idase (Stem Cell Technologies, 07919) was used instead of Collagenase/Hyaluronidase. After digestion, tumor cells were washed

twice with cold PBS + 2% FBS and 10mM HEPES (PBS-HF) and centrifuged at 1200 rpm for 5 min at room temperature. To remove

red blood cells, the cell pellet was treated with 4 or 8 mL cold AmmoniumChloride Solution (StemCell Technologies, 07850) with 1 or

2 mL PBS-HF (ratio 1:4), respectively, for 1 minute, then centrifuged at 1200 rpm for 5 min. The amount of Ammonium Chloride So-

lution added was based on the size of the cell pellet and visual assessment of pink or red color present in the pellet. This step was

repeated a second time if the pellet still exhibited a pink or red color after initial treatment. To further dissociate the cells, pellets were

resuspended in 1-2 mL 0.05% Trypsin-EDTA (GIBCO) and the suspension was gently pipetted up and down for 1 min. After 1 min,

trypsin was inactivated by adding 10mL PBS-HF solution. The suspension was then centrifuged at 1200rpm for 5 min. If cell suspen-

sionswere clumpy, cells were resuspendedwith 1-2mLDispase (StemCell Technologies, 07923) and 200 mL 1mg/mLDNase I (Stem

Cell Technologies, 07900) for 1 min, then inactivated with 10 mL PBS-HF. If the Dispase step was not necessary, cells were treated

with DNase I during the trypsinization step. Cells were again centrifuged at 1200 rpm for 5 min, then washed in 10 mL PBS-HF and

filtered through a 100mm cell strainer. A final centrifugation step was done at 1200 rpm for 5 min. The cell pellet was resuspended in

DMEM/F12 + 5% FBS using a volume based on the final pellet size and filtered using a 40mm cell strainer. Single-cell suspension

concentration and cell viability was measured by adding 10 mL 0.4% Trypan Blue to 10 mL cell suspension and measuring with

the Countess II Automated Cell Counter (Thermo Fisher, AMQAX1000). We aimed for cell viability above 60% for the cells to be

used for single-cell sequencing. Cell viability varied between 64% and 94% across all samples, with the majority of tumor suspen-

sions being over 70% viable.

Cell culture
OVCAR3 and HEK293T cell lines were obtained from ATCC. OVCAR3 cells were grown in RPMI media (GIBCO, 11875-093) supple-

mented with 10% FBS (Sigma) and 1% penicillin/streptomycin (Corning). HEK293T cells were grown in Dulbecco’s Modified Eagle’s

Medium (DMEM) (GIBCO, 11995065) supplemented with 10% FBS and 1% penicillin/streptomycin. OVCAR3-dCas9-KRAB-blast

(OVCAR3-KRAB) cells were grown in RPMI media supplemented with 10% FBS, 1% penicillin/streptomycin and 1 mg/mL blasticidin
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(Corning, 30100RB) after selection. All cell cultures were incubated at 37 �C in 5% CO2. Before use, OVCAR3 cells were authenti-

cated with Short Tandem Repeat profiling through ATCC. All cell lines were tested for mycoplasma.

METHOD DETAILS

Single-cell sequencing
To continue with scRNA-seq, the cell suspensionwas diluted to 1200 cells/mL. 10,000 cells were used to prepare scRNA-seq libraries

using the following 10x Genomics Single Cell 30 kits: Chromium Single Cell 30 GEM, Library & Gel Bead Kit v3 (PN-1000075), Chro-

mium Chip B Single Cell Kit (PN-10000153), and Chromium i7 Multiplex Kit (PN-120262) following the manufacturer’s protocol.

To continue with scATAC-seq, 500,000 cells were used in nuclei isolation following the Nuclei Isolation for Single Cell ATAC

Sequencing protocol from 10x Genomics. For the lysis step, cells were lysed for 4 min. For the resuspension step, nuclei were re-

suspended in 50 mL 1x Nuclei Buffer. Nuclei were counted by adding 10 mL 0.4%Trypan Blue to 10 mL nuclei suspension and counted

with the Countess II Automated Cell Counter. 10,000 nuclei were then used in library preparation using the following 10x Genomics

Single Cell ATAC Kits: Chromium Single Cell ATAC Library & Gel Bead Kit v1 (PN-1000110), Chromium Chip E Single Cell ATAC Kit

(PN-1000082), and Chromium i7 Multiplex Kit N, Set A (PN-1000084) following the manufacturer’s protocol. All libraries were

sequenced using the 10X Genomics suggested sequencing parameters on an Illumina NextSeq 500 instrument.

Engineering OVCAR3-dCas9-KRAB cells
Lentivirus containing the Lenti-dCas9-KRAB-blast vector (Xie et al., 2017) (Addgene #89567) was packaged in HEK293T cells.

HEK293T cells were seeded in a T75 flask and transfected with the following plasmids: 6.67 mg Lenti-dCas9-KRAB-blast, 5 mg

psPAX2 (gift from Didier Trono, Addgene #12260), and 3.33 mg PMD2G (gift from Didier Trono, Addgene #12259) using Fugene 6

(Promega, E2691) following the manufacturer’s protocol. The lentivirus containing supernatant was harvested 48-72 hours after

transfection and lentivirus was concentrated using Lenti-X Concentrator (Takara, 631231) following themanufacturer’s protocol. OV-

CAR3 cells were seeded in a six-well plate at 50,000 cells/well and transduced with the harvested lentivirus in RPMI media with 10%

FBS and 10 mg/mL polybrene (Millipore, TR1003G). Transduced cells were incubated with lentivirus for 72 hours, then placed in RPMI

selection media with 3 mg/mL blasticidin for 7 days. Batch selected OVCAR3-KRAB cells were validated by western blot. For western

blot analysis, cells were lysed using the following lysis buffer: 50 mM Tris HCl (pH 8), 0.5 M NaCl, 1% NP-40, 0.5% sodium deoxy-

cholate, 0.1% SDS and 1x protease inhibitor. The primary antibodies used for western blotting were as follows: Anti-beta Tubulin

Loading Control (Abcam, ab6046), Anti-Cas9 Antibody (7A9-3A3) (Santa Cruz Biotechnology, sc-517386). The b-tubulin antibody

was used at a 1:1500 dilution in 5% BSA in TBST with overnight incubation at 4�C. The Cas9 antibody was used at a 1:1500 dilution

in 5% BSA in TBST with overnight incubation at 4�C. The secondary antibodies used for western blotting were as follows: Donkey

anti-rabbit IgG, Whole Ab, HRP-conjugated (GE Healthcare, NA934) and Donkey anti-Mouse IgG (H+L), HRP-conjugated (Thermo

Fisher Scientific, PA1-28748). Secondary antibodies were used at a 1:5000 dilution in 5% BSA in TBST.

sgRNA design and vector cloning
sgRNAs targeting Enhancer 2 and Enhancer 3 were designed using the CRISPOR web tool (Concordet and Haeussler, 2018). Two

sgRNAs targeting unique regions of each enhancer were designed to be transfected together. The negative control sgRNA (sgScram-

ble) used was previously published (Lawhorn et al., 2014). The sgRNA cloning vector pX-sgRNA-eGFP-MI is a modified version of

pSpCas9(BB)-2A-Puro (pX459) v2.0 (Ran et al., 2013) (Addgene #62988). Cas9 was removed from pX459 and replaced with

eGFP to allow for visualization of sgRNA expression. To improve sgRNA stability and optimize for assembly with dCas9, the sgRNA

stem-loop was extended and modified with an A-U base pair flip (Chen et al., 2013). sgRNA vector cloning was done following the

protocol from Feng Zheng’s group (Ran et al., 2013). Briefly, sgRNA oligonucleotides were ordered from Integrated DNA Technolo-

gies (IDT). Oligonucleotides were duplexed with the following reaction: 10 mMsgRNA forward oligo, 10 mMsgRNA reverse oligo, 10 U

T4 polynucleotide kinase (NEB, M0201L), and 1x T4 ligation buffer under the following conditions: 37�C for 30minutes, 95�C for 5 mi-

nutes, then ramp down to 25�C at 5�C/minute. Duplexed sgRNAs were diluted 1:100, then 2 mL of this dilution was used in a ligation

reaction with 100 ng pX-sgRNA-eGFP-MI linearized with BbsI-HF (NEB, R3539S). The ligation product was transformed into Sub-

cloning Efficiency DH5alpha Competent Cells (Invitrogen, 18265017) following the manufacturer’s protocol. Each completed sgRNA

vector was verified by Sanger sequencing using the human U6 promoter sequencing primer (GGC-CTA-TTT-CCC-ATG-ATT-CC).

sgRNA oligonucleotide sequences can be found in Table S6.

CRISPRi
OVCAR3-KRAB cells were seeded in 6-well plates at 200,000 cells/well using antibiotic-free RPMI media supplemented with 10%

FBS. After 24 hours, cells were transfectedwith a total of 1.5 mg sgRNA vector per well using Fugene 6 (Promega, E2691) following the

manufacturer’s protocol. For the negative control well (Scramble), a single sgRNA vector was transfected. For wells targeting

Enhancer 2 and Enhancer 3, two unique sgRNAs were co-transfected in each well. 72 hours after transfection, cells were visualized

for GFP expression to ensure good transfection efficiency. Cells were then washed with 1x PBS and RNA was extracted using the

Zymo Quick-RNA Miniprep Kit (Zymo, R1055) with on-column DNaseI treatment. The experiment was conducted three times to

ensure reproducibility.
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RNAi
OVCAR3 cells were seeded in 6-well plates at 150,000 cells per well in antibiotic-free RPMI media. After 24 hours, cells were trans-

fected with 40 nM of siRNA (siGENOME SMARTpool, Dharmacon) using 3 mL RNAiMAX (Invitrogen, 13778075) following the man-

ufacturer’s protocol. After 48 hours, wells were washed with 1x PBS and RNA was extracted using the Zymo Quick-RNA Miniprep

Kit (Zymo, R1055) with on-column DNaseI treatment. The experiment was conducted three times to ensure reproducibility. The

siRNA sequences can be found in Table S7.

qRT-PCR
RNA extracted fromCRISPRi and RNAi experiments was treatedwith the TurboDNA-free Kit (Invitrogen, AM1907) following theman-

ufacturer’s protocol to ensure removal of all genomic DNA. Next, 2 mg of RNA was reverse-transcribed using the iScript cDNA Syn-

thesis Kit (BioRad, 1708891) following the manufacturer’s protocol. The resulting cDNA was analyzed by qPCR with SYBR Green

using the QuantStudio 6 Flex System (Applied Biosystems) and the primers listed below. mRNA expression was normalized to

ACTB using the 2-DDCT method. All experiments were conducted three times to ensure reproducibility. Results are shown as the

mean fold change ± SEM. Statistical analysis was conducted with the GraphPad Prism 9.0.0 software using Welch’s one-tailed t

test. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001. Primer oligonucleotide sequences

can be found in Table S8.

Single-cell RNA-seq quantification and quality control (QC)
Raw and filtered feature-barcode matrices for each patient tumor sample were generated using 10x Genomics Cell Ranger. For each

patient tumor sample, the filtered feature-barcodematrix was then converted into a Seurat object using the Seurat R package (Stuart

et al., 2019; R Core Team, 2020). To enrich for high quality cells in each patient dataset, QC and doublet removal were performed for

each patient dataset individually. First, outlier cells were defined in each of the followingmetrics: log(UMI counts) (> 2MADs, low end),

log(number of genes expressed) (> 2 MADs, low end) and log(percent mitochondrial read count +1) (> 2 MADs, high end) (McCarthy

et al., 2017). Only non-outlier cells meeting all three criteria were kept for doublet detection. Note that for the two lowest viability sam-

ples, collected from Patients 2 & 7, we had to manually set these QC thresholds. To reduce the false positive rate in doublet calling,

only cells marked as doublets by both DoubletDecon (DePasquale et al., 2019) and DoubletFinder (McGinnis et al., 2019) were

removed from downstream analysis. After QC and doublet removal for each patient dataset, the individual patient datasets were

combined using Seurat’smerge() to form each patient cohort presented in this study (All patients, endometrioid endometrial cancer

(EEC), high-grade serous ovarian cancer (HGSOC)).

Single-cell RNA-seq normalization, feature selection and clustering
Gene expression matrices were normalized using Seurat’s NormalizeData() with the normalization method set to ‘‘LogNormalize.’’

Feature selection was performed with Seurat’s FindVariableFeatures() with the selection method set to ‘‘vst’’ and the number of

top variable features set to 2,000. Before principal component analysis (PCA), we scaled the expression for all genes in the dataset

using Seurat’s ScaleData().We opted not to regress out UMI counts per cell because either 1) PC1 was not correlated to UMI counts

per cell or 2) evidence of biological variation was found in PC1 based on the number of inferred CNVs and cell type gene signature

enrichment. We opted not to regress out percent mitochondrial read count per cell because it could represent meaningful biological

variation as increasedmetabolic activity is a hallmark feature of cancer cells. The top 2,000most variable genes were summarized by

PCA into 50 principal components (PCs) and the cells were visualized in a two-dimensional UMAP embedding using Seurat’s Run-

UMAP() with all 50 PCs, as suggested by the results of Seurat’s JackStraw() (data not shown). To identify groups of transcriptionally

distinct cells, graph-based Louvain clustering was performed using Seurat’s FindNeighbors() with all 50 PCs and Seurat’s FindClus-

ters() with a resolution of 0.7. scRNA-seq UMAP plots were generated in R (R Core Team, 2020) using ggplot2 (Wickham, 2016).

Inference of copy number variation (CNV) from single-cell RNA-seq
For each patient tumor sample, putative copy number events were inferred for each cell cluster using the R package inferCNV (Tickle

et al., 2019). To determine which cell clusters would serve as a normal background, each cell was scored for enrichment in the ES-

TIMATE immune gene signature (Yoshihara et al., 2013) and in the PanglaoDB (Franzén et al., 2019) plasma cell gene signature using

Seurat’sAddModuleScore(). Cell clusters having amedian enrichment score > 0.1 in either of these gene signatures were deemed as

normal immune cell types and were used as a normal background for inferCNV. The remaining cell clusters, representing the remain-

ing cellular fraction of the tumor, were specified in inferCNV annotations file to infer CNVs at the level of these clusters. The standard

inferCNV algorithm was invoked with infercnv::run() with cutoff set to ‘‘0.1,’’ denoise set to ‘‘TRUE,’’ scale_data set to ‘‘TRUE’’ and

HMM set to ‘‘TRUE.’’ The default i6 Hidden Markov Model (HMM) was used to predict CNV levels based on a six-state CNV model

ranging from complete loss to > 2 copies. The Bayesian Network Latent MixtureModel was used to estimate the posterior probability

of each CNV level at each predicted CNV region. CNV regions with a posterior probability of a normal diploid state < 0.05 were

deemed as putative CNV events and were further used to justify the CNV status of each cluster (and thus the CNV status for each

cell). The inferred CNVs determined individually for each patient dataset were retained after combining multiple patient datasets

into the different patient cohort datasets. Boxplots showing the number of inferred CNV events in each cell type subcluster were

generated in R (R Core Team, 2020) using ggplot2 (Wickham, 2016).
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Single-cell RNA-seq cell type annotation
Cell type annotation was performed using a combination of 1) reference-based annotation with the R package SingleR (Aran et al.,

2019) and 2) gene signature enrichment with Seurat’s AddModuleScore(). After QC, doublet removal, and dimension reduction for

each patient dataset, single cells were annotated to known cell types using SingleR with a reference scRNA-seq dataset. Datasets

for Patients 1-5 were annotated based on a reference scRNA-seq dataset from the human endometrium (Wang et al., 2020). Datasets

for Patients 6-11 were annotated based on a reference scRNA-seq dataset from a human ovarian tumor (sample ID: HTAPP-624-

SMP-3212) (Slyper et al., 2020). The individual patient datasets were then combined using Seurat’s merge() to form each patient

cohort presented in this study and subsequently reprocessed according to the normalization, feature selection and clustering

methods described previously. The resulting clusters in each patient cohort dataset were annotated based on the majority cell

type label within each cluster. Finally, SingleR cell type annotations were verified by calculating single cell enrichment scores for

cell type gene signatures from PangladoDB (Franzén et al., 2019) using Seurat’s AddModuleScore(). The cell type annotations for

each cluster were then modified to include the cluster number identity hyphened with the cell type identity. To identify malignant

cell clusters, MUC16/CA125 and WFDC2/HE4 expression levels were used to identify EC and OC (Duffy et al., 2005; Sturgeon

et al., 2008; Hellström et al., 2003; Li et al., 2009; Dong et al., 2017) and KIT/CD117 expression level was used to identify GIST (Sar-

lomo-Rikala et al., 1998). A cluster was deemed malignant if it had inferCNV events and/or statistically significant increased expres-

sion (Wilcoxon Rank Sum test, Bonferroni-corrected p-value < 0.01) of any of these markers relative to the predicted non-malignant

fraction (Figures S4, S11, and S15). These criteria defined the final cell type subcluster identities for scRNA-seq that were used in

label transferring to the matching scATAC-seq data.

Calculating enrichment of gene signatures in single-cell RNA-seq
Single-cell gene signature enrichment was calculated using Seurat’s AddModuleScore() with the search parameter set to ‘‘TRUE’’ to

find aliases for gene names. Gene signature enrichment for pseudo-bulk clusters was performed using the R package GSVA

(H€anzelmann et al., 2013). To generate pseudo-bulk transcriptome profiles for each cluster as shown in Figure S18, raw gene counts

were summed across all cells in each cluster. The resulting matrix of genes by n clusters was then used as input into GSVA with the

method argument set to ‘‘gsva’’ and the kcdf argument set to ‘‘Poisson.’’ Gene signature enrichment violin plots and/or boxplots were

generated in R (R Core Team, 2020) using ggplot2 (Wickham, 2016).

Single-cell ATAC-seq quality control (QC)
For each patient tumor sample, a list of unique ATAC-seq fragments with associated barcodes was generated using 10x Genomics

Cell Ranger ATAC. The list of unique fragments per barcode for each patient tumor sample was read into the R package ArchR

(Granja et al., 2021) to perform quality control and doublet removal for each patient dataset individually. To enrich for cellular barc-

odes, we took advantage of the bimodal distributions in log10(TSS enrichement+1) and in log10(number of unique fragments) char-

acterizing two different populations of barcodes (cellular and non-cellular). Barcode cutoff thresholds for log10(TSS enrichement+1)

and log10(number of unique fragments) were estimated using a Gaussian Mixture Model (GMM) for each metric, as implemented in

the R package mclust (Scrucca et al., 2016). Only barcodes above these estimated thresholds in both metrics were kept as cellular

barcodes for doublet detection. Note that for our lowest viability samples, collected from Patients 2 & 7, we manually set these QC

thresholds. Doublet enrichment scores were calculated for cellular barcodes using ArchR’s addDoubletScores()with the knnMethod

set to ‘‘UMAP.’’ Cellular barcodes with doublet enrichment scores > 1 weremarked as potential doublets and subsequently removed

based on the filterRatio parameter of ArchR’s filterDoublets() function.

Single-cell ATAC-seq quantification, feature selection and integration with single-cell RNA-seq
We opted not to use the peak-barcode matrices generated by Cell Ranger ATAC because these peaks were called in a pooled/bulk

setting (i.e., using all fragments captured by the assay in such away that is agnostic to barcode identity). This would effectively drown

out the signal from rare cell types present in the dataset. Therefore, we used the R package ArchR (Granja et al., 2021) to construct an

initial feature matrix of 500 bp genomic tiles across all cells in each patient cohort. To reduce dimensions of the genomic tile features,

we adopted the iterative latent semantic indexing (Cusanovich et al., 2015; Satpathy et al., 2019; Granja et al., 2019) (LSI) procedure

implemented in the ArchR R package (Granja et al., 2021). Briefly, this procedure performs term frequency-inverse document fre-

quency (TF-IDF) normalization to upweight more informative features followed by an initial LSI reduction on the top accessible tiles.

Graph-based Louvain clustering is used to identify low resolution clusters in which feature counts are summed across all cells in each

cluster to identify the top 25,000 most variable features across clusters. This procedure was iterated once more by inputting the top

25,000 most variable tiles from iteration 1 as the top accessible tiles in iteration 2. The iterative LSI procedure computed 50 LSI di-

mensions that were then collapsed further into a two dimensional UMAP embedding using ArchR’s addUMAP()with the same UMAP

parameters used in Seurat’s RunUMAP(). LSI dimensions that were correlated with sequencing depth (> 0.75, Pearson correlation)

were not included in downstream analysis. scATAC-seq UMAP plots were generated in R (R Core Team, 2020) using ggplot2 (Wick-

ham, 2016).

Before transferring labels from scRNA-seq to scATAC-seq, gene activity scores were inferred in scATAC-seq using ArchR’s addG-

eneScoreMatrix(). Briefly, this method uses the following features to estimate gene activity: 1) fragment counts mapping to the gene

body, 2) an exponential weighting function to give higher weights to fragment counts closer to the gene and lower weights to fragment
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counts father away from the gene, and 3) gene boundaries to prevent the contribution of fragments from other genes. Seurat’s CCA

implementation (Stuart et al., 2019) in FindTransferAnchors() and TransferData() was used to assign each of the scATAC-seq cells a

cell type subcluster identity from the matching scRNA-seq data and an associated label prediction score. This label transferring pro-

cedure was constrained to only align cells of the same patient dataset (e.g., Patient 1 scATAC-seq cells were assigned only to cell

type subclusters represented by Patient 1 scRNA-seq cells). All scATAC-seq cells were included in UMAP visualization and in calcu-

lating patient contribution per cluster, but only scATAC-seq cells with a label prediction score > 0.5 were included in downstream

analyses. Also, only inferred cell type subclusters with > 10 cells were included in downstream analysis to ensure enough cells for

peak calling in each cluster. This criterion was raised to > 30 cells for the HGSOC patient cohort analysis. After scATAC-seq cells

received a cell type subcluster label, pseudo-bulk replicates were generated for each inferred cell type subcluster in the R package

ArchR (Granja et al., 2021) and pseudo-bulk peak calling was performed within each inferred cell type subcluster using MACS2

(Zhang et al., 2008; Liu, 2014). ArchR’s default iterative overlap procedure was used to merge all peak calls into a single peak by

barcode matrix across all cellular barcodes in each patient cohort dataset. Genomic browser tracks displaying the pseudo-bulk

ATAC-seq coverage patterns within cell types were generated using ArchR’s plotBrowserTrack() function (Granja et al., 2021).

Differential gene expression and differential peak accessibility
Differential gene expression analysis in scRNA-seq was performed using Seurat’s FindAllMarkers()with themin.pct set to ‘‘0.25’’ and

only.pos set to ‘‘FALSE.’’ This procedure identifies differentially expressed genes (DEGs) between two groups of cells using a Wil-

coxon Rank Sum test. Unless otherwise noted in figure legends, DEGs were identified for each cell cluster by comparing the expres-

sion values of genes across all cells in a cluster (group 1) relative to the expression values for all remaining cells in the dataset (group

2). We chose a stringent Bonferroni-corrected p-value threshold of 0.01 for determining differentially expressed genes after multiple

testing. For some cases, we pooled together malignant clusters to form group 1 and compared against non-malignant clusters to

form group 2. For these special cases, we set the min.pct parameter to zero. Differential peak accessibility analysis in scATAC-

seqwas performed using ArchR’s getMarkerFeatures()with the bias argument set to include both ‘‘TSSEnrichment’’ and ‘‘log10(num-

ber of fragments).’’ This procedure identifies differentially accessibility peaks (DEPs) between two groups of cells using a Wilcoxon

Rank Sum test. DEPs were identified for each cell cluster by comparing the accessibility values of peaks across all cells in a cluster

(group 1) relative to the accessibility values for a group of background cellsmatched for TSS enrichment and read depth (group 2).We

chose a stringent Benjamini-Hochberg corrected p-value threshold of 0.01 for determining differentially accessible peaks (Log2FC

> = 1.25) after multiple testing, and used these thresholds for determining distal marker peaks for the Total Functional Score of

Enhancer Elements (TFSEE) analysis (Figure 6; Figures S19 and S20).

Kaplan-Meier (KM) survival curves
All KM plots and hazard ratio statistics for each gene were generated using the Kaplan Meier Plotter web tool (Gyorffy et al., 2012;

Nagy et al., 2018; Szász et al., 2016) available at https://kmplot.com/analysis/. Detailedmetadata for each KManalysis, such as data-

sets used, filtering criteria, etc., are listed in Table S4.

To determine the expression cutoff for stratifying patients into high versus low groups, we used the auto select best cutoff option.

Briefly, this method involves computing all possible cutoff values between the lower and upper quartiles and choosing the KM plot

result with the maximum difference between the p value and hazard ratio.

Pseudo-bulk clustering of patient tumors
To create a pseudo-bulk transcriptome profile for each patient tumor sample as shown in Figure S9, the raw feature barcode matrix

generated by 10x Genomics Cell Ranger (v3.1.0) was collapsed into a single profile by row summing the raw counts across all barc-

odes (cellular and non-cellular). Only genes expressed across all patient samples were kept for downstream analysis due to a lack of

replicates to distinguish biological zeros from technical zeros. The resulting matrix of 19,914 genes by 11 patients was transformed

with the regularized logarithm transformation in the DESeq2 (Love et al., 2014) R package to stabilize variance and to account for

differences in library size between patients. The top 5% most variable genes were chosen for unsupervised hierarchical clustering

and principal component analysis (PCA). Hierarchical clustering, with complete linkage and 1-Pearson correlation as the distance

metric, was performed in the R package sigclust2 (Kimes et al., 2017) to assess statistical significance of splitting. Dendrograms

were generated by invoking sigclust2::shc() with the alpha set to 0.05 and n_min set to 8. The R package ComplexHeatmap (Gu

et al., 2016) was used to generate the heatmap of the top 5%most variable genes across 11 patients using the custom dendrogram

generated by sigclust2. The PCA plot of 11 patient tumors based on the top 5%most variable genes was generated using DESeq2’s

plotPCA().

To create a pseudo-bulk chromatin accessibility profile for each patient tumor sample as shown in Figure S9, the position sorted

bam file generated by 10x Genomics Cell Ranger ATAC (v 1.2.0) was inputted into the R package csaw (Lun and Smyth, 2016) to

quantify ATAC fragments into 200 bp contiguous genomic tiles. The read parameters were set using csaw’s readParam() with

minq set to ‘‘20,’’ pe set to ‘‘both,’’ dedup set to ‘‘TRUE,’’ max.frag set to ‘‘500,’’ and discard to set to a Granges object listing

hg38 blacklist regions. The 200 bp genomic tile matrix was constructed using csaw’s windowCounts() with ext set to ‘‘100,’’ width

set to ‘‘200,’’ and bin set to ‘‘TRUE.’’ Only genomic tiles accessible across all patient samples were kept for downstream analysis

due to a lack of replicates to distinguish biological zeros from technical zeros. The resulting matrix of 6,052,083 genomic tiles by
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11 patients was transformed with the regularized logarithm transformation in the DESeq2 (Love et al., 2014) R package to stabilize

variance and to account for differences in library size between patients. The top 5% most variable genomic tiles were chosen for

unsupervised hierarchical clustering and principal component analysis (PCA). Hierarchical clustering, with complete linkage and

1-Pearson correlation as the distance metric, was performed in the R package sigclust2 (Kimes et al., 2017) to assess statistical sig-

nificance of splitting. Dendrograms were generated by invoking sigclust2::shc() with the alpha set to 0.05 and n_min set to 8. The R

packageComplexHeatmap (Gu et al., 2016) was used to generate the heatmap of 3,000 randomly sampled features out of the top 5%

most variable genomic tiles across 11 patients using the custom dendrogram generated by sigclust2. The PCA plot of 11 patient tu-

mors based on the top 5% most variable genomic tiles was generated using DESeq2’s plotPCA().

Peak-to-gene correlation analysis with empirically derived FDR (eFDR)
Peak-to-gene correlation analysis was performed to identify putative regulatory relationships by correlating peak accessibility to

imputed gene expression across scATAC-seq metacells. This procedure was invoked by ArchR’s addPeak2GeneLinks() with reduc-

edDims set to ‘‘IterativeLSI’’ and dimsToUse set to ‘‘1:50.’’ Gene expression in scATAC-seq was imputed after the Seurat label trans-

fer procedure. This procedure calculated imputed gene expression values by multiplying the scRNA-seq expression values by the

anchor weights matrix defining the association between each scATAC-seq cell and each anchor. Next, low-overlapping aggregates

of scATAC-seq cells were generated via a k-nearest neighbor procedure in the LSI space to reduce noise and to ensure robust cor-

relations in the features. Aggregates with > 80% overlap with any other aggregate were removed to reduce to bias. This procedure

resulted in approximately 500 aggregates of scATAC-seq cells which were used to correlate the accessibility of every peak to the

imputed expression of every gene on the same chromosome using an implementation of fast feature correlations in C++ using

the Rcpp package implemented by the ArchR (Granja et al., 2021) R package.

To assess statistical significance of the peak-to-gene correlations as shown in Figure S7, we developed an elaborate empirical

FDR (eFDR) procedure to help screen for robust peak-to-gene associations (Storey and Tibshirani, 2003). To estimate the eFDR,

the number of observed peak-to-gene associations with a raw p value % 1e-12 was first recorded. The peak-to-gene correlation

analysis was then repeated 100 times under the permuted null condition where, for each permutation, the scATAC-seq metacell la-

bels were shuffled for the peak data only to break the link between peak accessibility and gene expression. To calculate the eFDR, the

median number of null peak-to-gene associations with a raw p value% 1e-12 across all 100 permutations was divided by the number

of observed peak-to-gene associations with a raw p value % 1e-12. This entire procedure was conducted for each patient analysis

cohort (full cohort, EEC, and HGSOC) based on the peak matrices generated for each patient analysis. The initial raw p value

threshold of 1e-12 was chosen over the first-quartile of the observed p value distribution because in two out of three analysis cohorts,

the 1e-12 raw p value threshold offered a preferable (lower) eFDR relative to the first-quartile approach.

To compute the distribution of the number peaks per gene and vice versa as shown in Figures 2D and S8, a peak-to-genemetadata

table was first created where each row contained a peak name, or set of genomic coordinates, and a corresponding gene name. The

distribution of the number peaks per gene was computed by tallying the number of unique gene names. The distribution of the num-

ber genes per peak was computed by tallying the number of unique peak names.

To identify patient-specific andmalignant cell type-specific peak-to-gene correlations, as shown in Figures S12, S13, and S16, the

scATAC-seq ArchR dataset was subsetted accordingly to only include patient or malignant cell type barcodes of interest before re-

computing the peak-to-gene links.

Genomic coordinate overlap analysis with normal epigenome profiles
To identify putative cancer-specific distal regulatory elements (dREs) within each patient analysis cohort as demonstrated in Fig-

ure S8, the genomic coordinates of the distal peaks participating in the cancer-enriched peak-to-gene links were overlapped with

a set of normal epigenome profiles.

H3K27ac ChIP-seq peaks of ovarian surface epithelium cell lines iOSE4 and iOSE11 were downloaded from GSE68104. The hg19

genomic coordinates from iOSE4 rep1, iOSE4 rep2, iOSE11 rep1, and iOSE11 rep2 were merged into one combined peak set using

the reduce() function from the GenomicRanges R package (Coetzee et al., 2015; Lawrence et al., 2013). After liftOver from hg19 to

hg38, this combined peak set served as the normal reference enhancer profile for ovarian surface epithelium (Bioconductor Package

Maintainer, 2020). H3K27ac ChIP-seq peaks of fallopian tube secretory epithelial cell lines iFTSEC33 and iFTSEC246 were down-

loaded from GSE68104. The hg19 genomic coordinates from iFTSEC33 rep1, iFTSEC33 rep2, iFTSEC246 rep1, and iFTSEC246

rep2 were merged into one combined peak set using the reduce() function from the GenomicRanges R package (Coetzee et al.,

2015; Lawrence et al., 2013). After liftOver from hg19 to hg38, this combined peak set served as the normal reference enhancer profile

for fallopian tube secretory epithelium (Bioconductor Package Maintainer, 2020). The last normal reference epigenome profile was

supplied by the full list of Candidate cis-Regulatory Elements by ENCODE (ENCODE cCREs) in hg38 (Moore et al., 2020a).

findOverlapsOfPeaks() from the ChIPpeakAnno R package was used to find overlaps between the cancer-enriched peaks and the

normal reference epigenome profiles (Zhu et al., 2010). Genomic coordinate overlap between features was defined as a minimum of

1 bp overlap. The cancer-enriched peak coordinates that did not overlap with any of the normal reference epigenome profiles were

deemed cancer-specific peaks.
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Predicting transcription factor occupancy at select putative enhancer regions in high-grade serous OC (HGSOC)
The sequences of the select putative enhancers in the malignant fraction of Patient 9, as shown in Figure 4D, were extracted with

bedtools (Quinlan and Hall, 2010) getfasta() after accounting for single-nucleotide variants relative to the hg38 reference genome.

Single-nucleotide variants in the malignant fraction were called using bcftools (Danecek and McCarthy, 2017) mpileup followed

by bcftools (Danecek and McCarthy, 2017) consensus with a bam file containing fragments only from cellular barcodes present in

in the Patient 9 malignant fraction. This malignant-specific bam file was generated using Cell Ranger’s bamslice. The putative

enhancer sequences were inputted into Find Individual Motif Occurrences (FIMO) (Bailey et al., 2015) motif scanning with the–

bgfile parameter set to ‘‘motif-file’’ and with a motif database supplied by JASPAR2020 (Fornes et al., 2020). The FIMO output listing

matching motif occurrences was filtered for matches with a q-value < 0.10. This list of statistically significant motif matches was

further ranked by TF expression in the malignant fraction of Patient 9 calculated by summing the normalized TF counts across all

cells in the malignant fraction. TF expression boxplots were generated in R (R Core Team, 2020) using ggplot2 (Wickham, 2016).

Total functional score of enhancer elements (TFSEE)
TFSEE analysis, as presented in Figure 6, was performed to identify transcription factors (TFs) enriched at active distal regulatory

elements (dREs) for each malignant cell type (Malladi et al., 2020) (Franco et al., 2018). Referring back to the entire patient cohort,

11 out of 36 cell type subclusters were chosen for TFSEE analysis based on patient specificity, inferred copy number events and

malignant cell type identity (Figure 1D; Figure S18). Only malignant cell type clusters with 100% patient specificity were chosen

for the TFSEE analysis.

To generate the dRE or enhancer activity matrix, statistically significant dREs identified in the peak-to-gene linkage analysis (Pear-

son correlation > 0.45, p value% 1e-12) were set intersected with a list of differentially accessible peaks enriched (Benjamini-Hoch-

berg corrected p value % 0.01 & log2FC > = 1.25) in each of the malignant cell type groups. Pseudo-bulk enhancer activity profiles

were generated by row summing the counts across all cells in each malignant cell type. Only enhancer regions that were accessible

across all malignant cell types were included in the analysis due to a lack of replicates to distinguish biological zeros from technical

zeros. The resulting matrix of enhancers by malignant cell types was transformed with the regularized logarithm transformation in the

DESeq2 (Love et al., 2014) R package to stabilize variance and to account for differences in library size between malignant cell type

groups. Post-transformation, the enhancer activitymatrix was scaled from 0 to 1 (cell type-wise) prior to the TFSEEmatrix operations.

To generate the TF motif prediction matrix, motif search and matching were performed with MEME and TOMTOM, respectively

usingMEME suite of programs (Bailey et al., 2009, 2015). The sequences of the enhancers in eachmalignant cell type were extracted

with bedtools (Quinlan and Hall, 2010) getfasta() using the hg38 reference genome. The enhancer sequences were then inputted into

MEMEmotif searching using the following flags: -dna, -mod zoops, -nmotifs 15, -minw 8, -maxw 15, and -revcomp. The MEME out-

puts were inputted into TOMTOM motif matching using the flags -evalue and -thresh 10 with a motif database supplied by JAS-

PAR2020 (Fornes et al., 2020). The outputs of MEME and TOMTOMwere parsed using a custom Python script written by the original

authors (Malladi et al., 2020) of TFSEE to generate a matrix of TF motif prediction scores (https://git.biohpc.swmed.edu/gcrb/tfsee).

This motif prediction score matrix was scaled from 0 to 1 (enhancer-wise) prior to the TFSEE matrix operations.

To generate the TF expression matrix, pseudo-bulk gene expression profiles were generated by row summing the gene counts

across all cells in each malignant cell type. Only genes that were expressed across all malignant cell types were included in the anal-

ysis due to a lack of replicates to distinguish biological zeros from technical zeros. The resulting matrix of genes by malignant cell

types was transformedwith the regularized logarithm transformation in the DESeq2 (Love et al., 2014) R package to stabilize variance

and to account for differences in library size between malignant cell type groups. Post-transformation, the gene expression matrix

was subsetted to TFs identified in the motif prediction analysis and then scaled from 0 to 1 (cell type-wise) prior to the TFSEE matrix

operations.

The enhancer activity matrix was multiplied with the TF motif prediction matrix to form an intermediate matrix product. This matrix

product was element-wise multiplied with the TF expression matrix to form the final TFSEE matrix used in downstream analysis (Fig-

ure 6A). Heatmaps of the final TFSEEmatrix were generated in R (R Core Team, 2020) using ComplexHeatmap (Gu et al., 2016;Wick-

ham, 2016).

The rank order frequency distribution plots were generated by computing the difference in scaled TFSEE score between two con-

ditions or malignant cell types of interest. If multiple malignant cell types were represented in a condition, the average TFSEE score

profile was computed to form one observation for that condition group in the difference calculation. Rank order plots were generated

in R (R Core Team, 2020) using ggplot2 (Wickham, 2016).

QUANTIFICATION AND STATISTICAL ANALYSIS

For computational analyses, statistical details can be found in the corresponding figure legends and in the publicly available Github

repository (https://github.com/RegnerM2015/scENDO_scOVAR_2020). Most of the computational analyses and statistical tests

were performed in R version 4.0.3 (R Core Team, 2020). Statistical significance for correlation, Wilcoxon-Rank Sum, and Kruskal-

Wallis tests were defined as a p value < 0.01 unless otherwise indicated in the figure legends ormethod details section. The remaining

statistical analyses were performed through the Unix command line interface with the Cell Ranger software or the MEME suite of

tools (Grant et al., 2011; Bailey et al., 2009, 2015). Statistical significance for Cell Ranger related analyses can be described further
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here: https://support.10xgenomics.com/single-cell-gene-expression/software/pipelines/latest/what-is-cell-ranger. Statistically sig-

nificant motif matches identified by the FIMO software were defined as a Benjamini-Hochberg corrected p value (i.e., q value) < 0.10.

For qRT-PCR, statistical details of experiments can be found in the corresponding figure legends. Results are shown as the mean

fold change (n = 3) ± SEM (n = number of biological replicates). Statistical analysis was conducted with the GraphPad Prism 9.0.0

software using Welch’s one-tailed t test. Statistical significance is indicated by *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001.
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