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SUMMARY
Breast cancer is classified intomultiple distinct histologic types, andmany of the rarer types have limited char-
acterization. Here, we extend The Cancer Genome Atlas Breast Cancer (TCGA-BRCA) dataset with additional
histologic type annotations in a total of 1,063 breast cancers. We analyze this extended dataset to define tran-
scriptomic and genomic profiles of six rare, special histologic types: cribriform, micropapillary, mucinous,
papillary, metaplastic, and invasive carcinoma with medullary pattern. We show the broader applicability of
our constructed special histologic typegene signatures in the TCGAPan-Cancer Atlas datasetwith a predictive
model that detectsmucinous histologic type across cancers of other organ systems. Using a normalmammary
cell differentiation score analysis, we order histologic types into a continuum from stem cell-like to luminal pro-
genitor-like to mature luminal-like. Finally, we classify TCGA-BRCA into 12 consensus groups based on inte-
grated genomic and histological features. We present a rich, openly accessible resource of genomic, molec-
ular, and histologic characterization of TCGA-BRCA to enable studies across the range of breast cancers.
INTRODUCTION

TheWorld Health Organization classifies breast epithelial tumors

into multiple histologic types,1–3 which were originally defined by

their unique cytologic and architectural features. Among these,

the most common type of breast cancer histology is invasive

breast carcinoma no special type (NST), also known as invasive

ductal carcinoma (IDC), which accounts for 70%–80% of all

breast cancers.4,5 According to the 5th edition of the WHO

classification of breast tumors, breast cancers with a special his-

tologic pattern in > 90% of the cancer are designated as pure

special histologic types, but cancers lacking such specific fea-

tures are designated as IDC (with cancers containing between

10% and 90% a special type considered ‘‘mixed IDC-special

subtype’’). The pure special histologic types together make up

the remaining 20%–30% of breast cancers.3,5

IDC exhibits heterogeneity in terms of clinical characteristics,

treatment, and prognosis, which are heavily determined by its

intrinsic molecular subtype as defined by gene expression.6–10

Gene expression-defined intrinsic subtypes are also available
C
This is an open access article under the CC BY-N
for many of the other special histologic types;4,11,12 however,

there are specific phenotypic features that characterize these

distinct rarer histologic types. Among the special types, invasive

lobular carcinoma (ILC) is the second most frequent histologic

form of breast cancer after IDC and was comprehensively char-

acterized in a TCGA study.13 ILC is histologically characterized

by an absence of gland and nest formation and shows a unique

appearance of dyshesive cancer cells in slender strands known

as a ‘‘single file’’ pattern invading into the stroma.1,2 We and

many other groups before us have reported that ILC histologic

type is associated with a mutation and/or low gene expression

of the CDH1/E-cadherin gene.13–15 Furthermore, intrinsic sub-

typing of ILC identifies it as a relatively homogeneous group pre-

dominantly falling under the estrogen receptor positive (ER+)

luminal A (LumA) molecular subtype, but it is associated with a

worse prognosis than LumA IDC.16,17

The remaining special histologic types are low in frequency,

with their individual prevalence ranging from 0.1% to 6%.18 These

rare histologies typically show homogeneous intrinsic subtypes

divided broadly into two groups: (1) ER+ luminal subtype group
ell Genomics 1, 100067, December 8, 2021 ª 2021 The Authors. 1
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composed of mucinous (MUC), tubular, and papillary (PAP) carci-

nomas4,19–21 and (2) ER� basal-like subtype group including inva-

sive carcinoma with medullary pattern (MED), adenoid cystic, and

metaplastic (META).11,22,23 However, distinct features likely exist

within each rare histologic type, and the aforementioned findings

suggest that each type is a unique entity with specific molecular

features extending beyond intrinsic subtypes. Only a few studies

have characterized together multiple rare histologic types.4,18

In this work, we present the final dataset for genomic, molec-

ular, and histological analyses of 1,095 primary breast cancers in

TCGA-BRCA, including for the first time complete histologic type

annotations for 1,058 samples derived from the international

breast cancer pathology expert committee review. With this

expanded dataset, we characterize the transcriptomic and

genomic profiles of six rare special histologic types in the

TCGA-BRCA. We identify differentially expressed (DE) genes

by histology and independent of intrinsic subtype, construct his-

tologic group-specific gene lists that cluster the rare histologic

types, and study inter-relationships relative to ILCs, IDCs, and

other known molecular subtype features.

RESULTS

Gene expression analysis identifies unique features in
rare histologic types
To identify rare histologic types in the TCGA database, pathol-

ogists examined the remaining 245 cases that were previously

designated as ‘‘others’’ in their histologic type using the same

criteria and methods as described for the previously published

850 TCGA breast tumors,24 all of which were based on using the

TCGA hematoxylin and eosin (H&E) slide database (Figure 1).

The classification of previously designated ‘‘others’’ into special

histologic types was performed by review of each case by at

least two pathologists independently in the year 2016 and

yielded 1,058 cases with interpretable H&E virtual slides, out

of which 99 cases were diagnosed as rare histologic types

(i.e., not IDC, ILC, or mixed IDL/ILC; Figures 1A and 1B). The pa-

thologists used the ‘‘Breast_EPC_TCGA scoring sheet’’ for

defining all histologic types and all histologic features; an

example of this sheet can be found in the published work by

Heng et al.24 We performed intrinsic subtyping (a methodology

to classify breast cancer based on gene expression) of the

entire set of 1,095 breast cancers in the TCGA-BRCA dataset

and noted that the TCGA breast cancer rare histologic types

had a predominance of ER+ LumA and luminal B (LumB) sub-

types, except for the META and invasive carcinoma with

medullary pattern (MED) tumors. These two were mostly ER
Figure 1. Histopathologic annotation schema and overall distribution

subtype in TCGA

(A) Schematic of TCGA-BRCA histopathological annotation schema, with 99 samp

and eosin (H&E)-stained photomicrographs of all the annotated TCGA-BRCA his

(B) Distribution of all 1,095 TCGA-BRCA primary breast cancer patients accordi

LumA, LumB, HER2E, and normal-like), including claudin low (CLOW).

(C) ADENO, adenoid cystic carcinoma (n = 1); APO, apocrine carcinoma (n = 3); C

specified (n = 647); ILC, invasive lobular carcinoma (n = 183); MCPAP, micropapi

12); META, metaplastic carcinoma (n = 14), MUC, mucinous carcinoma (n = 24),

PHY, phyllodes tumor (n = 1); SEC, secretory carcinoma (n = 1); TUB, tubular carc

LumA, luminal A subtype; LumB, luminal B subtype; HER2E, HER2-enriched sub
negative, progesterone receptor (PR) negative, and human

epidermal growth factor receptor (HER2) negative, thus consti-

tuting the triple-negative breast cancer (TNBC) clinical subtype

and showing mostly basal-like gene expression subtype fea-

tures (Figure 1C; Data S1). Five claudin-low (CLOW) molecular

subtype samples were identified in this dataset using hierarchi-

cal clustering analysis and the cell line predictor of Prat et al.25

to identify those tumors that are called CLOW by both methods,

out of which four showed the META histologic type (Figure 1C);

the remainingMETA sample did not have representative images

to be re-evaluated into a histologic type for the purpose of the

present work, but it should be noted that it was denoted as a

META carcinoma in the original histopathology report (Data

S1). Overall, these molecular subtyping results were consistent

with previous reports.20,23,26 Interestingly, the PAP carcinomas

showed intrinsic subtype heterogeneity like IDC, with the pres-

ence of LumA and basal-like subtype samples within this single

histologic type (Figure 1C; Figures S1A and 1B).

The identification of basal-like gene expression features in a few

PAP carcinomas was unexpected considering current knowledge

of PAP neoplasm classification, which classically exhibits ER pos-

itivity and is considered to be a LumA molecular subtype.21,27

Therefore, three experienced breast cancer pathologists (K.A.,

L.C.C., andS.J.S.) fromtheTCGABreastCancerPathologyGroup

specifically re-evaluated the digital slides of the PAP carcinoma

samples in theTCGA-BRCAdigital slidedatabaseandcategorized

them into (1) encapsulated, (2) solid, and (3) invasive PAP carci-

nomas.We found thatPAPcarcinomasof LumAandLumBmolec-

ular subtypes (PAP-Luminal) were mostly solid PAP carcinomas:

invasive type (5/11), in situ (1/11), followed by IDCwith foci of solid

PAP carcinoma (2/11), IDC alone (2/11), and one caseof encapsu-

latedPAPcarcinoma (TableS1). ThePAPcarcinomasofbasal-like

molecular subtype (PAP-Basal) were re-classified as IDC with

pseudo-PAP features (3/4) and one solid PAP carcinoma (Figures

S1C–S1F and Table S1). Lastly, one PAP carcinoma of HER2-en-

riched (HER2E) molecular subtype was classified as a high-grade

encapsulated PAP carcinoma. It was thus decided that the utiliza-

tion of PAP-Basal as a unique group would not be appropriate, as

most of these cases upon re-review resembled IDCwith ‘‘pseudo’’

papillae formation; we provide the representative H&E images of

these four PAP-Basal cases and what we considered as

pseudo-PAP (Figures S1C–S1E) with one true solid PAP carci-

noma diagnosis (Figure S1F). All of these PAP-Basal cases had a

TP53 mutation and high histologic grade (including more cellular

proliferation with < 10% tubule formation [n = 4/4], higher mitotic

figures/10 high-power field [HPF; n = 4/4], and marked variation

in nuclear pleomorphism [n = 3/4]).
of all histopathologic types of breast cancer according to molecular

les classified into special histologic types and their representative hematoxylin

tologic types (n = 1,058; magnification 203).

ng to re-annotated histologic type and the PAM50 molecular subtype (Basal,

RIB, cribriform carcinoma (n = 6); IDC, invasive ductal carcinoma not otherwise

llary carcinoma (n = 17); MED, invasive carcinoma with medullary features (n =

NEURO, neuroendocrine carcinoma (n = 1); PAP, papillary carcinoma (n = 16);

inoma (n = 3); mixed, a combination of more than one histologic type (n = 129);

type.
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To identify genes uniquely associated with each rare histologic

type, we analyzed only those histologic types with a minimum of

five samples from the 2016 histology annotation schema (Data

S1),which left uswith invasive cribriform (CRIB, n = 6), invasivemi-

cropapillary (MCPAP, n = 17), MED (n = 12), MUC (n = 24), META

(n = 14), and PAP (n = 16). Differential gene expression analysis

comparing each histologic type against the rest of the TCGA-

BRCAsamplesyielded ‘‘raw’’ geneexpressionsignaturescontain-

ing significant upregulated genes associated with these six rare

subtypes (Figure 2A; Data S3). For the sake of completeness,

similar analyses were performed for the four intrinsic subtypes of

IDC (LumA, LumB, basal-like, HER2E) and for ILC as a whole;

note that formost comparative analyses, tumorswith ‘‘mixed’’ his-

tologic typeannotationwereexcluded.Thesesignificant genesets

from the ‘‘raw’’ gene signatures showed an enrichment of the

PAM50 intrinsic subtype-determining genes, due to the typical

enrichment of one or a few intrinsic subtypes within a given rare

histologic type.

To identify further transcriptomic features, we conducted gene

set enrichment analysis (GSEA) that identified similar overlap be-

tween histologic types. The LumA/LumB subtype predominant

histologies (i.e., CRIB, MCPAP, MUC, PAP-Luminal) shared

GSEA hallmarks including early estrogen response, late estro-

gen response, and protein secretion (FDR = 0, Data S3), whereas

the basal-like group histologies (MED, META) shared immune-

related GSEAs (inflammatory response, TNF-a signaling, IFN-g

signaling), mitosis-related GSEAs (G2M checkpoint, mitotic

spindle, E2F targets), and signaling pathways like MYC, KRAS,

and WNT-b-catenin (FDR = 0, Data S3). Overall, these results

demonstrate that although the upregulated ‘‘raw’’ genes were

unique to each histologic type, the intrinsic subtype genes

were still dominating the biological significance of this

comparison.

To avoid the confounding factor of intrinsic subtype, we per-

formed differential expression analysis of each rare histologic

type against the rest of the breast cancers in TCGA-BRCA

(including IDC and ILC in the analysis) falling only within the

same molecular subtype of the respective rare histologic type.

We refer to this differential gene expression as ‘‘mol-sub’’ (mo-

lecular-subtype). In this manner, we made the following compar-

ison groups: (1) CRIB versus LumA BRCA, (2) MCPAP versus

LumA/LumB BRCA, (3) MUC versus LumA/LumB BRCA, (4)

MED versus LumB/basal-like BRCA, (5) META versus basal-

like BRCA, and (6) PAP-Luminal versus LumA/LumB BRCA.

For the META comparison group, we excluded the META sam-

ples with a CLOW gene signature (META-CLOW, 4/14 of the

META group) as these had no complimentary CLOW samples

in any other histologic type in the TCGA-BRCA dataset. The

‘‘mol-sub’’ differentially expressed genes showed reduction of

PAM50 genes in each rare histologic type when compared to

the ‘‘raw’’ lists. Overall, comparing ‘‘raw’’ gene expression signa-

tures with ‘‘mol-sub’’ signatures showed an increase of gene

sets in comparison groups for CRIB, MCPAP, MED, and META

(Figure 2B; Data S3). Further, while the ‘‘raw’’ differential gene

expression showed GSEA enrichment of estrogen-related and

immune-related genes, ‘‘mol-sub’’ also showed enrichment in

additional gene ontology (GO) and hallmark gene sets with histo-

logic relevance.
4 Cell Genomics 1, 100067, December 8, 2021
CRIB ‘‘mol-sub’’ GSEAs were enriched for genes associated

with ribosome activation and protein transportation (family-

wise error rate [FWER] p value = 0, FDR = 0, Data S3). MCPAP

‘‘mol-sub’’ GSEA was enriched for significant amounts of angio-

genic (FWER p value = 0, FDR = 0), endothelial (FWER p value =

0.005, FDR = 0.0004), and vasculature development (FWER p

value = 0, FDR = 0) pathways in comparison to MCPAP ‘‘raw’’

GSEA (Data S3); MCPAP histology is characterized by tumor

cell clusters present in spaces resembling vascular spaces and

associated with increased lymphovascular invasion (LVI),28 and

we found LVI present in 9/17 (53%) TCGA-BRCA MCPAP sam-

ples as well (Data S2 and Table S2). MED ‘‘mol-sub’’ GSEA

was enriched for cell-cell adhesion GO (FWER p value = 0,

FDR = 0) in comparison to MED ‘‘raw’’ GSEA (Data S3). Finally,

META ‘‘mol-sub’’ GSEA was enriched for many relevant path-

ways, like hallmark KRAS signaling pathway (FWER p value =

0.01, FDR < 0.0001), p53 pathway (FWER p value = 0.01,

FDR < 0.0001), and keratinocyte differentiation (FWER p value =

0, FDR = 0). Interestingly, similar GSEA analysis on PAP-Luminal

identified a high enrichment of axonemal assembly (FWER p

value = 0.007, FDR = 0.001) (Data S3).

Supervised clustering of breast cancer rare histologies
across multiple datasets
To analyze additional datasets for validation, we constructed

combined gene lists from individual ‘‘mol-sub’’ gene lists derived

from each histologic type (Data S3). Upregulated genes from

each histology "mol-sub" gene list consistently performed well;

the top upregulated significant genes (FDR < 0.05) with a log2

fold change > 2 from the six "mol-sub" gene lists were com-

bined. From this list, duplicated genes were removed and

counted only once. We designate this constructed gene list as

the "upregulated mol-sub" intrinisic histology gene list. Super-

vised hierarchical clustering utilizing the ‘‘upregulated mol-

sub’’ gene list separately clustered the samples largely accord-

ing to the histologies (Figure 3A) when using TCGA training set

data. Using consensus clustering to assess robustness, we

found eight clusters that largely tracked with histologic type (Fig-

ures S3A–3C).

To validate its performance, we utilized the ‘‘upregulated mol-

sub’’ gene list in supervised hierarchical clustering analysis on

breast cancer datasets, including rare histologic types from the

METABRIC dataset (Figure 3B) and the NKI special histologies

dataset (Figure 3C), which effectively clustered samples based

on their histologic type rather than based on the molecular sub-

type. Using METABRIC, which had 32 MED and 46 MUC sam-

ples, 27/32 MED samples clustered together and 43/46 MUC

samples were grouped together. For the NKI dataset, 15/19

MUC samples were grouped together, as were 7/8 MCPAP,

14/20 META, and 8/10 MED samples.

Breast cancer MUC gene signature predicts MUC
histologic type in other cancers
We next considered the applicability of these breast cancer spe-

cial histologic types to the 9,000 other samples in the TCGAPan-

Cancer Atlas dataset.29 We searched for similar histologic types

first by name/term, which were present in other tissue systems

with available histologic data. Thyroid and kidney cancer



A

B

Figure 2. Upregulated genes from the ‘‘raw’’ and ‘‘mol-subtype’’ comparisons for each of the six special histologic types of breast cancer

(A) Heatmap representation of the top ten upregulated genes in the ‘‘raw’’ gene signatures constructed for 89 patients of CRIB (n = 6), MCPAP (n = 17), MED (n =

12), META (n = 14), MUC (n = 24), and PAP (n = 16) histologic subtypes (Bonferroni adjusted p value < 0.0001) along with important clinicopathological parameters

like estrogen receptor (ER) status, progesterone receptor (PR) status, human epidermal growth factor receptor 2 (HER2) status, and American Joint Committee on

Cancer (AJCC) stage for the respective histologies.

(B) Venn diagrams showing the gene sets enriched via GSEA in ‘‘raw’’ versus ‘‘mol-sub’’ comparisons for respective special histologic types (FDR < 0.05).
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samples had ‘‘PAP carcinomas’’ histologic diagnosis; however,

this is the major histologic type in these organs and, essentially,

not rare cancers like the breast PAP carcinomas. Conversely, the

other special histologic type relatively abundantly found in other

organ systems was the MUC type, which was present in stom-

ach adenocarcinoma (n = 20), rectal adenocarcinoma (n = 13),

colon adenocarcinoma (n = 61), pancreas adenocarcinoma

(n = 4), and cervical adenocarcinoma (n = 17).

We combined all of these cancer types together, along with all

other epithelial cancer types, to form a dataset that had amixture

of all epithelial types of cancers, with 65 histologic types

including cancers with MUC histology (Data S4). This dataset

had 6,017 samples from 16 tumor types and included 132 sam-

ples diagnosed as a MUC histologic type (excluding breast can-

cers, Data S4). We distributed the pan-cancer 6,017-sample da-

taset into a training and testing dataset (70% cases in training

and 30% in testing) with an equal distribution of MUC samples.

We then trained an elastic net model on the TCGA-BRCA MUC

‘‘upregulated-nodal’’ gene list using the training dataset. The

MUC "upregulated-nodal" gene list consists of the 44 genes

that had high nodal correlation (> 0.80) and strongly influenced

clustering of MUC samples in the TCGA BRCA dataset (Figure

3A). Our TCGA-BRCA-trained elastic net model predicted the

non-BRCA MUC samples in the testing dataset with a high de-

gree of accuracy, with an area under the curve (AUC) of 0.93 (Fig-

ure 4), thus highlighting the conserved nature of this distinct his-

tologic type. Classical mucin gene MUC2 was the highest

positive predictive gene in this classifier (Figure 4; Table S3).

Finally, GSEA analysis identified pan-cancer MUC samples to

have an enrichment of O-glycan processing (FDR = 0.001,

Data S4) and protein O-linked glycosylation (FDR = 0.002, Data

S4) gene ontologies. As a note, we also applied the ‘‘upregu-

lated-nodal’’ gene list from the breast ‘‘PAP-Luminal’’ histologic

type to identify other PAP carcinomas in the same 6,017-sample

dataset; however, the classifier failed to predict PAP carcinomas

in other organs.

Breast cancer META samples and the CLOW molecular
phenotype
In the context of TCGA Pan-Cancer Atlas samples, we also

analyzed the distribution of breast cancers with special histol-

ogy according to the clustering of cluster assignments (CoCA)

pan-cancer grouping, which yields 24 major molecular sub-

types.29 Based on CoCA assignments founded upon 10,000 tu-

mors, most of the BRCA samples fell into two major groups:

661/879 were classified in CoCA 23, and 157/879 were in

CoCA 20; these two CoCA groups were largely composed of

breast tumor samples and correspond to ‘‘luminal’’ (CoCA 23)

and ‘‘basal-like’’ (CoCA 20). CoCA classification of the special

histologic samples, regardless of the histologic type, placed

these samples into two major CoCA groups; the LumA,

LumB, and HER2E special histologic samples fell in CoCA 23
Figure 3. Construction of a special histologic type-specific gene list tha

(A) Supervised clustering utilizing the "upregulated mol-sub" intrinsic histologic g

with clustering driven by MCPAP-, META-, MED-, and MUC-associated genes a

(B and C) Supervised clustering utilizing the "upregulated mol-sub" intrinsic histo

types and not according to the intrinsic molecular subtypes in the METABRIC (n
and the basal-like special histologic type samples in CoCA 20

(Figure 5A).

However, someMETAbreast tumors clustered into non-breast-

predominant CoCA groups, namely CoCA groups 7, 8, and 14,

which prompted a more in-depth analysis of the META histologic

samples. To examine the biology of theMETA samples, an impor-

tant expression subtype not contained within the PAM50 assay

needs to be considered—the CLOW subtype, which shows

many stem cell-like and mesenchymal-like features.25,30,31 Identi-

fyingCLOWsamples using thePrat et al.25 cell line-basedcentroid

predictor typically over-calls the number of CLOW samples rela-

tive to the number obtained from hierarchical clustering, where it

was originally identified; thus, we used this centroid predictor

together with hierarchical clustering analysis to identify CLOW

samples in the TCGA pan-cancer 1,095-sample dataset; specif-

ically, samples had to be called CLOW by the cell line-based pre-

dictor, cluster together in a hierarchical cluster, and show the

distinctive lowexpressionof theCLOW-defininggeneset.Surpris-

ingly, only five samples were identified as centroid predictor pos-

itive and clustered together by hierarchical clustering analysis. Of

note is that 4/5 of these CLOW molecular subtype samples

showed META histologic type, with the fifth lacking a tumor slide

image for pathologic re-annotation (Data S1); however, also note

that the original TCGA report classified it as a META sample

(Data S1). All theMETA-CLOWsamples (n = 4) had a predominant

mesenchymal component upon histologic examination and clus-

tered with CoCA group 7 or 14, both of which had sarcoma

(SARC) and melanoma samples as the group predominant tumor

types (Figure 5A).

Additionally, the three pathologists from the TCGA Breast

Cancer Pathology Group also performed a re-review of all the

META samples in this analysis to delineate the META compo-

nent. META samples that had a predominant squamous histo-

logic component without a spindle cell component (n = 3; Table

S4) clustered with the pan-squamous cancers CoCA group 8

that was chiefly composed of head and neck, cervical, lung,

and esophageal squamous carcinomas. In contrast, the non-

CLOW META samples had more features of mixed META carci-

noma (2/7) with admixture of META components (Table S4). All

the META-CLOW samples had a predominant mesenchymal/

spindle cell component (Table S4).

We next performed gene expression and ontology analysis on

these specific META samples in CoCA group 8 (META-squa-

mous) and CoCA groups 7 and 14 (META-CLOW) from overall

META (non-squamous/non-CLOW) (n = 7) samples and found

squamous cell carcinoma and sarcoma genes enriched in these

groups, respectively (Figure 5B; Table S5). For the META-squa-

mous samples with a predominant squamous META compo-

nent, there were several keratinocyte differentiation and epithe-

lial development genes upregulated (WNT7A, WNT10A, JAG1,

SFN, FOXN1, LCE1C, AQP3, EPHA2, and TP63; FDR Benjamini

& Hochberg [B&H] = 0.003; Data S5). For the META-CLOW
t groups breast cancer patient samples according to histologic type

ene list clusters samples predominately according to special histologic types

nd biological pathways (n = 89).

logic gene list clusters samples predominately according to special histologic

= 78) (B) and NKI datasets (n = 57) (C).

Cell Genomics 1, 100067, December 8, 2021 7



Figure 4. Elastic net modeling using breast

mucinous carcinoma genes predicts

mucinous carcinomas of other cancer types

in the TCGA Pan-Cancer Atlas dataset

Schematic illustration of elastic net model for

mucinous carcinoma histologic predictions in the

TCGA Pan-Cancer Atlas dataset, containing 132

mucinous carcinomas from various organ sys-

tems. Solid red line, AUC for the training dataset;

solid blue line, AUC for the testing dataset. At right,

a bar plot of the coefficients of genes from the

breast mucinous gene signature, in descending

order, showing positive and negative contribution

of genes in the mucinous histologic predictor.

CEAC, cervical adenocarcinoma; COAD, colon

adenocarcinoma; LUAD, lung adenocarcinoma;

READ, rectal adenocarcinoma; STAD, stomach

adenocarcinoma. All representative photomicro-

graphs are of 103 magnification.
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samples that had predominant mesenchymal sarcomatous fea-

tures (chondrosarcoma/osteosarcoma), there were collagen-

binding and extracellular matrix organization genes upregulated

(MMP9, MMP13, COL5A3, CTSK, SPARC, P3H1, and TGFBI;

FDR B&H < 0.0001; Data S5).

Consensus classifications based on genomics and
histologic type
It is well appreciated that breast cancers can be classified based

on histology and genomics; throughout this manuscript we noted

many agreements between these two classification schemes, as

well as a few disagreements. Thus, we strove to arrive at a classi-

fication schema that combines these two together into a frame-

work for future use. For genomics-based classification, we define

5 groups (LumA, LumB, HER2E, basal-like, and CLOW), and from

histology we define 8 groups (IDC, ILC, CRIB, MCPAP, MED,

MUC, PAP, and META). We combined these together by creating

groups based first on histology, and then according to the pre-

dominant molecular subtype (and using only classifications that

have five or more representatives present within this TCGA

1,095-sample dataset); when doing so, we arrive at 12 tumor

consensus groups: IDC-Basal, IDC-LumA, IDC-LumB, IDC-

HER2E, ILC-Luminal, CRIB, MCPAP, PAP-Luminal, META-

CLOW, META, MUC, and MED. For the sake of completeness,

we show the MIXED group samples in TCGA-BRCA (any combi-

nation of two histologic types) but exclude the MIXED group

from the 12 biological groups. MIXED histologic group is not a

clear biologic group, but instead is a group of samples with com-

plex histologic makeup and heterogeneous molecular subtype

composition, and thus these MIXED samples do not form a single

biologically homogeneous group; additional future studies are

needed to identify unique properties of the MIXED group.

To initially characterize these12consensusgroups,weanalyzed

them using our previously published breast epithelial ‘‘differentia-
8 Cell Genomics 1, 100067, December 8, 2021
tion score’’ (D score)25, which is a tran-

scriptome-based score based on three

FACS-purified normal breast epithelial

cell populations (i.e., mammary stem cell,
luminal progenitor, and mature luminal, each of which was gene

expression profiled). Briefly, this method utilizes a distance-

weighted discrimination (DWD) alignment of gene expression

values of a test sample to a defined normal mammary cell type

axis;25 the D score ranks gene expression along this scale from

the mammary stem cell signature at one end of the scale, the

luminal progenitor in the middle, and the mature luminal signature

at the other end. We organized the 12 consensus groups into a

gradual continuum based on ascending order of the D score

(Figure 6A).

Next, we were interested in performing genomic analyses of

these 12 consensus groups, including DNA copy number

(CNA) and mutational analyses; however, the small sample sizes

of the groups were underpowered for routine methods of

analyzing TCGA CNA and somatic mutation profiles. Instead,

we calculated percentages of samples within a consensus group

exhibiting broad CNA chromosome arm level (GISTIC2 calls) and

somatic mutation events. Percentage counts of DNA CNA

events were compared based on the transcriptomic D score;

as such, the 12 consensus groups were organized into four

broader groups: (1) basal group (IDC-Basal), (2) low differentia-

tion group (MED, META; this group contained special histologic

types with low D scores and histologically exhibited features of

low-differentiation-like metaplasia), (3) luminal group (IDC-

LumA/LumB/HER2E, ILC-Luminal, MCPAP), and (4) high differ-

entiation group (MUC, CRIB, PAP-Luminal; this group had spe-

cial histologies with high D scores and features of higher-differ-

entiation-like mucus secretion and papillae formation). Upon

comparison of all four groups together, the broad chromosomal

arm events that were significantly associated with D scores were

5q loss, 3q gain, 4p loss, 8q gain, 13q loss, and 2p gain (ANOVA

p value for all groups < 0.0001 and ANOVA p value for pairwise

comparison < 0.005, Table S6). Among these events, however,

4p loss and 2p gain were the two events that showed a steady



Figure 5. Metaplastic carcinomas of breast group away fromother breast carcinomas into other subtypes dictated by their predominant type

of metaplasia

(A) Tabular representation of TCGA-BRCA samples according to the pan-cancer cluster of cluster assignment (CoCA) groups and histologic types. Colored rows

represent breast samples clustering out of the predominant breast CoCA group.

(B) Representative disease correlation using top upregulated genes obtained after differentially expressed (DE) gene analysis between META-squamous group

versus META (right panel) and META-sarcoma group versus META (left panel). PAAD, TCGA pancreatic adenocarcinoma; SARC, TCGA sarcomas; Pan-Squam,

TCGA pan-squamous group; LAML, TCGA acute myeloid leukemia; BRCA, TCGA breast cancer; multiple, no specific TCGA cancer study; B&H, Benjamini-

Hochberg adjusted; FDR, false discovery rate.
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decrease in percentage as the D score and degree of histologic

differentiation increased (Figure 6B; Data S6). The second com-

parison was the presence of events specifically frequent within

the low-differentiated histologies group (MED, META) and IDC-

Basal. In this scenario, 14q loss (ANOVA p value < 0.0001 and

ANOVA p value for pairwise comparison < 0.005, Table S6)

were not frequentmarks seen in theMETA histologic type, show-

casing the uniqueness of the META histologic type within this

group (not shown in the figure). The final broad CNA pairwise

comparison was the presence of events frequent within the

high-differentiation group (CRIB, MUC, and PAP-Luminal) and

the luminal group (IDC-LumA, IDC-LumB, ILC-Luminal, MCPAP,
and IDC-HER2E); a major event found here was the decrease in

frequency of 22q loss events in the histologies with a high D

score (ANOVA p value < 0.0001) followed by a decrease in fre-

quency of 20q gain (statistically not significant) (Figure 6C). Over-

all, a trend of decrease in overall CNA events was seen as the de-

gree of differentiation of a histologic type increased.

Similarly, looking at mutations, we found that the TP53 muta-

tion percentage was high in histologies with a low D score, and

GATA3 mutation percentage was high in histologies with a

higher D score (Figure 6D; Figures S4 and S5 and Table S7).

PIK3CA mutation percentages were highest in ILC-Luminal

and IDC-LumA/B and lower in all other histologic types
Cell Genomics 1, 100067, December 8, 2021 9



Figure 6. Histologic types of breast cancer

can be grouped based on normal mammary

cell type differentiation score (D score), spe-

cific CNA events, mutation events, and

immunologic gene signatures

(A) Box-and-whisker plots of the 12 consensus

groups defined by histology and gene expression

(x axis) using the D score (y axis) indicate the me-

dian score (horizontal line), the interquartile range

(IQR, box boundaries), and 1.5 times the IQR

(whiskers). The heatmap indicates the clustering of

the 7,000 most variable genes of 886 samples with

D score.

(B) Bar plots of significant CNA events high in ‘‘high

differentiation’’ and ‘‘low differentiation’’ histologic

groups.

(C) Bar plots of significant CNA events unique to

‘‘high differentiation’’ versus ‘‘luminal’’ group.

(D) Bar plot of Tp53 and Gata3 mutation events in

the 12 biologically relevant breast cancer groups.

(E) Box-and-whisker plots of the GSEA PD1 and

IgG transcriptomic signatures (fourth row); median

score (horizontal line), the interquartile range (IQR,

box boundaries), and 1.5 times the IQR (whiskers).

Broad groups are separated by dotted colored

lines: brown, IDC-Basal; red, low differentiation

group (MED, META); green, luminal group (IDC-

HER2E, ILC-Luminal, MCPAP, IDC-LumA, IDC-

LumB); blue, high differentiation group (MUC,

CRIB, PAP-Luminal). MaSC, mammary stem cells.

The original FACS-sorted population nomenclature

and cell surface markers that the D score was

based upon are highlighted.25

See also Table S7, Data S6, and Figures S4 and S5.
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(Figures S4 and S5). Finally, certain histologies exhibited unique

mutation percentages, e.g., PTENmutation was present in 30%

of META samples andMAP3K1mutation was present in 24% of

MCPAP samples (Table S7). There was no unequivocally clini-

cally actionable mutation that was specific for any of the six spe-

cial histologic types. Next, we examined the most common

actionable (BRCA1/2 and PIK3CA) events and another set ofmu-

tations that some might consider actionable, like PTEN and

MAP3K1. None of the six special types harbored more than

one BRCA1/2 somatic mutation and/or germline mutation,

except for theMED histologic type, which had a BRCA1 germline

event detected in 3/12 patients (Table S8); however, MCPAP (5/

17) and PAP-Luminal (3/11) showed common PIK3CA muta-

tions, which might be targeted with alpelisib if treated in the met-

astatic setting. We also report MAP3K1mutations in the MCPAP

(5/17) histologic type, with one case having co-occurring

PIK3CA and MAP3K1 mutations (Table S7).

We also identified a correlation between the D score for the 12

consensus groups with immune cell genomic signatures. Im-

mune cell signatures including GSEA_PD1, IgG Signature (Fig-

ure 6E, significance analysis of microarrays [SAM] q value = 0)

showed a low signature value for the histologies with a higher dif-

ferentiation (MUC, CRIB, PAP-Luminal) and, conversely, high im-

mune signature scores in low-differentiation histology types like

META and MED. Including these two, we also report 35 statisti-

cally significant immune cell signatures that have a similar

pattern (Table S9, SAM q value = 0).

DISCUSSION

Breast cancer is known to have at least 21 different histologic

types, classified using a combination of architectural and cyto-

logical features. Among these, the majority are IDCs, and the

rest form special histologic types1–3. IDC is essentially a diag-

nosis of exclusion: these tumors lack the defining features of

any of the special histologic types. However, it is well appreci-

ated that distinct molecular intrinsic subtypes have been identi-

fied among IDCs, which dictate much of their underlying

biology.10 These intrinsic subtypes are also found in the special

histologic types, along with additional genes influencing the

distinct phenotypic features found in them. For example, so-

matic mutation and/or loss of protein expression of CDH1/E-

cadherin is associated with non-cohesive cells in ILCs.13 In this

work, we characterized the transcriptome profiles of six rare his-

tologic types in the TCGA-BRCA dataset, each represented by

five or more tumors.

We analyzed four conventionally ER+ special histologic

types—CRIB, MUC, MCPAP, and PAP—and two TNBC histo-

logic types, META and MED. To identify genes of histologic rele-

vance, we performed differential gene expression analysis fol-

lowed by GSEA on each of these six histologies. We found that

within each histologic type, specific comparisons taking into ac-

count the predominant molecular subtype increased the number

of relevant GSEA findings associated with these histologic types

(Figure 2B; Data S3). For example, MCPAPwas found to have an

enrichment of genes associated with endothelial cell activation

and angiogenic pathways, which could explain its high propen-

sity for LVI.32,33 This could also indicate that the MCPAP histo-
logic type might benefit from anti-angiogenic drugs. MED signa-

ture was associated with cell adhesion genes, which could

explain its ‘‘sheet-like’’ or ‘‘syncytial’’ histologic growth

pattern,34 although when we clustered this histology with all of

the basal subtype histologic types, the signature was not very

well highlighted (Figure S2B). This correlates with the recent

removal of this entity as a distinct histology by the WHO,

describing it instead as IDC with medullary-like features. We

would like to note that, as a biologic group, MED was predomi-

nately composed of a basal molecular subtype. METAwas asso-

ciated with keratinization and epithelial-mesenchymal transition-

related pathways, which could explain its higher percentage of

distant metastasis and skin involvement.35 Both MED and

META histologic types also had a significant enrichment of the

EGFR pathway, which could indicate a possible response to

anti-EGFR therapy. The presence of such biological pathways

correlated well with mixed spindle and squamous components

that were noted in this pathologically diverse histologic group

(Data S1). Using pan-cancer analysis, we were able to further

separate the META histologic type into predominant squamous

component type (META-squamous) and predominant META

mesenchymal component type (META-CLOW), and in the latter

case we show that these rare breast tumors share more molec-

ular features with sarcomas than they do with other breast can-

cers. This indicates unique genomic events occurring in these

histologic types, distinct from other breast cancers. This also in-

dicates the relevance of determining the CLOW subtype in the

case of a META histologic type, as this forms a unique biologic

group within this histology type.

MUC histologic type is used when > 90% of tumor clusters are

found floating in pools of mucin.1,2,36 These tumors have been

described as unique transcriptomic and genomic entities when

compared against IDC,20 and through our analysis we again

find this to be true, including the granin proteins that have

been described before. We further validated this finding by

showing that a newly derived MUC histologic signature seems

to be shared in MUC carcinomas of other organ systems (Fig-

ure 5). This finding has been previously reported, whereby the

mucin histochemistry shared between these tumors is associ-

ated with O-acylation of sialomucins.37,38 Thus, we corroborate

this finding and provide a unique gene signature involved with

the MUC histologic type.

In the pathological annotation scheme from the present study,

the PAP histologic type had the presence of ER+ LumA/LumB

and ER� basal-like intrinsic subtypes, which alerted us to revisit

these slide images again. Upon re-examination with a panel of

three expert breast cancer pathologists, it was agreed that

most of the basal-like PAP carcinomas were more consistent

with high-grade IDCs with pseudo-PAP growth (3/4). However,

one of the cases was confirmed to be a solid PAP carcinoma

(Figure S1F). This finding correlated well with a study of PAP car-

cinomas by Piscuoglio et al.,27 which also reported one basal-

like solid PAP carcinoma. We report the genomic and mutation

profiles of these so-called basal-like PAP carcinomas here

both to note the potential diagnostic pitfalls of high-grade

basal-like cancers that have pseudo-papillae rather than true

invasive papillary growth and to reiterate that solid PAP carci-

nomas rarely fall into non-luminal molecular subtypes. These
Cell Genomics 1, 100067, December 8, 2021 11



Figure 7. A TCGA breast cancer classification based on molecular and histologic features combined

Schematic representation of 12 consensus groups defined by histology and gene expression analyses of the TCGA-BRCA dataset and organized by differ-

entiation (D) score. These groups are connected by an outer ring based on D score (lowest differentiation to highest differentiation arranged in anticlockwise

direction). From the D score ring inward: The second ring exhibits PAM50 subtype association with D score (red, basal; pink, HER2E; blue, LumA and LumB;

yellow, claudin low). The next ring highlights the proliferation gene signature, which is high in all biological groups with a low D score but also in one group with a

high D score, namely IDC-LumB. The next two rings represent the descending abundance of CNA events (4p loss, 2p gain) and mutation events (Tp53 mutation)

associated with ascending D score. The final ring exhibits decreasing immunological gene signatures in relation to ascending D score. The innermost pie chart

exhibits the clinical immunohistochemistry status found in these 12 breast cancer consensus groups.
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tend to harbor TP53 mutations and should be diagnosed and

managed with the caution that they may not share the favorable

outcomes associated with the more typical luminal solid PAP

carcinoma. Most of the PAP-Luminals were called invasive solid

PAP carcinomas or an IDC with a solid PAP carcinoma compo-

nent. There was transcriptomic similarity of PAP-Luminal to

MUC carcinomas in having highly differentiated cell structures

like cilia, suggesting a common pathobiology, and having a

higher cellular differentiation, as shown by the D score

(Figure 6A).

We were underpowered to identify CNA and somatic mutation

events associated with these rare types with statistical signifi-

cance, given our small sample sizes. However, we sought to

look for broad CNA events per chromosome arm and important

breast cancer somatic mutation events per individual histologic

group (Figure 6B) by correlating the transcriptomic D score to

genomic events. We classify 12 consensus groups derived

from our histological and gene expression analyses of the

TCGA-BRCA dataset and organize these according to D score.

We again note that the histologic types with the lowest D scores

are thought to share transcriptomic similarity to mammary stem

cells, thosewith low tomoderate scores relate to luminal progen-

itor cells, and those with high D scores are transcriptomically like

mature luminal cells. In this way we find that the META-CLOW is

the lowest, IDC subtypes are mostly in the middle, and ER+ spe-
12 Cell Genomics 1, 100067, December 8, 2021
cial histologic types (MUC, CRIB, PAP-Luminal) are on the high

end.

In our continuum of the 12 consensus groups organized by D

score, first is META-CLOW to IDC-Basal, then next are the ER�
special histologic types (META, MED), and then IDC-HER2E,

ILC-Luminal, MCPAP, IDC-LumA, and IDC-LumB, in that order.

Using this organization, we can place certain DNA CNA events,

such as the high percentage of 4p loss, 2p gain, and TP53muta-

tion, within the TNBC/IDC-Basal and special histologies with

lower D scores (Figure 7), and which go lower as one leaves

this section of the wheel. Similarly, we find a paucity of 22q

loss, 20q gain, and increased GATA3 mutation as uniting fea-

tures of higher differentiated histologic types. Besides these,

we also found that the D scores also inversely correlated with

35 RNA-seq-based immune cell signatures. This finding can

suggest possible use of immunotherapy in special histologies

with lower D scores as is already being explored in IDC-Basal.

Limitations of the study
There are some limitations to our study. First and foremost, we

had small numbers of tumors in the six special histologic groups,

which inmany cases were not powered for robust statistical tests,

especially for mutation-associated features. However, for gene

expression, we were able to validate a number of these associa-

tions on other datasets with special histologic annotations. Given
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that these special histologic groups are rare,1–3 even these small

numbers are useful in helping with their study. Additionally, to vali-

date our gene expression results from this study, we utilized the

METABRIC and NKImicroarray-based gene expression datasets,

which contained special histologic type.

Another limitation is that our histologic annotations are

derived from one or two virtual slides and therefore were

subject to less than the ideal method of definitive diagnosis

recommended for these entities. Although the pathology re-

view committee did not have access to all the original

diagnostic slides, multiple expert breast cancer pathologists

reviewed each virtual slide, and their agreement was taken

into account when a diagnostic annotation was provided

for the TCGA-BRCA dataset. In light of the 2019 revised

WHO breast histopathology classification,2 MED carci-

nomas are not considered a unique histologic type and

are considered as a special variety of IDC known as IDC

with medullary features. A re-annotation was also per-

formed for all PAP carcinomas and META carcinomas, as

described in the Results. We have also included the orig-

inal TCGA histologic type diagnoses according to the pa-

thology reports available at the time of sample collection

to offer a holistic picture of the revision of these entities.

In conclusion, our aim with the TCGA breast tumor biological

wheel is to present a uniting scheme for molecular, histological,

and biological information on breast cancers. Based on our com-

bined histologic and molecular subtype approach, we estimate

12 consensus groups in the TCGA-BRCA dataset, but we

encourage further research in identifying additional unique and

biological groupings. Here, we have provided updated reference

of histological and genomic annotations for the TCGA-BRCA da-

taset, providing a comprehensive set of classifications for this

unique and highly utilized breast cancer resource.
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TCGA-BRCA mRNA-seq data NCI GDC https://portal.gdc.cancer.gov
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Pan-Cancer mRNA-seq data PanCanAtlas RNA (final) https://gdc.cancer.gov/

about-data/publications/pancanatlas

dbGaP accession phs000178

TCGA-BRCA GISTIC2 gene-level copy

number data

TCGA GDAC Firehose http://firebrowse.org

TCGA-BRCA somatic mutation data PanCanAtlas https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA Cancer digital slide archive (CDSA) Emory University https://cancer.digitalslidearchive.org/

Pathology histologic type annotation and

scoring sheet

Heng et al. (2017)24 PMID: 27861902

TCGA-BRCA 2016 histologic type

annotations

This study Data S1

TCGA-BRCA 2016 histologic morphologic

scores

This study Data S2

METABRIC mRNA-seq data European Genome-Phenome Archive accession number: EGAS00000000083

NKI mRNA-seq data Weigelt et al. (2008)4 PMID: 18720457 Array Express

(http://www.ebi.ac.uk/arrayexpress),

experiment number E-NCMF-3

Pan-Cancer histologic type annotations PanCanAtlas TCGA-CDR-SupplementalTableS1.xlsx

https://gdc.cancer.gov/about-data/

publications/pancanatlas

TCGA Papillary carcinoma 2019 re-

annotation

This study Table S1

TCGA Metaplastic carcinoma 2019 re-

annotation

This study Table S4

Software and algorithms

R (version 3.5) R Development Core Team https://www.R-project.org

Cluster 3.0 (version 1.59) Stanford University http://bonsai.hgc.jp/�mdehoon/software/

cluster/software.htm

Java Treeview (version 1.2.0) Stanford University http://jtreeview.sourceforge.net/

GenePattern (version 3.9.10) Broad Institute https://www.genepattern.org/

Differentiation Score DWD calculator (R

package version)

UNC microarray database static

publication website

https://genome-publications.bioinf.

unc.edu/clow/

PAM50 molecular subtyping method (No

version)

UNC microarray database static

publication website

https://genome-publications.bioinf.

unc.edu/PAM50/

Claudin low centroid predictor (No version) UNC microarray database static

publication website

https://genome-publications.bioinf.

unc.edu/clow/
RESOURCE AVAILABILITY

Lead Contact
All future information regarding the datasets and results in this work can be directed to Charles M. Perou (cperou@med.unc.edu).

Materials availability
All revised histopathologic type annotations including 11 various pathologic feature scores are included in Data S2.
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Data and code availability

d This study utilized previously published RNA-seq data available for TCGA-BRCA and TCGA Pan-Cancer Atlas pan-cancer da-

tasets. There was no new sequencing data generated. The TCGA-BRCA RNA-seq dataset was downloaded from the GDC

Data Portal (based on GDC data release 12) using genome reference build GRCh38.p0 (https://portal.gdc.cancer.gov). The

TCGA Pan-Cancer RNA-seq data - RNA (Final) - EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv was

downloaded from the PanCanAtlas publications page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The

TCGA-BRCA GISTIC2 gene-level copy number data was downloaded from The Broad Institute TCGA GDAC Firehose with

no further processing (all_data_by_genes.txt). The TCGA-BRCA somatic mutation data (Mutations – mc3.v0.2.8.PUBLIC.

maf.gz) was downloaded from the PanCanAtlas publications page (https://gdc.cancer.gov/about-data/publications/

pancanatlas).

d There were no new codes generated for any analysis in this paper. We used well known default functions available for our DNA

copy number, RNA-seq DE gene analysis (DESeq2), and classifier (elastic netmodel). For RNA-seq differential gene expression

analysis, we used DESeq2 (version 3.7, R software package version 3.5; https://bioconductor.org/packages/release/bioc/

html/DESeq2.html). All cluster based analysis was performed using Cluster 3.0 using the C clustering library version 1.59

and heatmaps were visualized using Treeview version 1.2.0. Gene set enrichment analysis was performed using the GSEA

module hosted by Genepattern browser version 3.9.10. ConsensusClusterPlus version 3.8, R package version 3.5 was used

for consensus clustering analysis. GISTIC version 2.0 was used to generate gene level copy number data (https://software.

broadinstitute.org/software/cprg/?q=node/31). We provide the elastic net features and weights in Figure 4 and Data S4.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Datasets used and histopathological assessment
There was no new sequencing data generated. The TCGA-BRCA RNA-seq dataset was downloaded from the GDC Data Portal

(based on GDC data release 12) using genome reference build GRCh38.p0 (https://portal.gdc.cancer.gov). The TCGA Pan-Cancer

RNA-seq data - RNA (Final) - EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv was downloaded from the PanCa-

nAtlas publications page (https://gdc.cancer.gov/about-data/publications/pancanatlas). The TCGA-BRCAGISTIC2 gene-level copy

number data was downloaded from The Broad Institute TCGA GDAC Firehose with no further processing (all_data_by_genes.txt).

The TCGA-BRCA somatic mutation data (Mutations – mc3.v0.2.8.PUBLIC.maf.gz) was downloaded from the PanCanAtlas publica-

tions page (https://gdc.cancer.gov/about-data/publications/pancanatlas). TCGA PanCanAtlas data was retrieved and processing

were performed as previously described; samples were obtained from patients with appropriate consent from institutional review

boards.13 The raw data, processed data and clinical data can be downloaded from the PanCanAtlas publication page (https://

gdc.cancer.gov/about-data/publications/pancanatlas). TCGA histologic interpretation was made through images that were as-

sessed via TCGA digital slide archive (CDSA) (http://cancer.digitalslidearchive.net/;39). Two independent pathologists reviewed

each sample photomicrograph. For the diagnosis of special histologic types, 90%of tumor area exhibiting the specificmorphological

appearance as outlined by theWHOwas set as a diagnostic criterion. Briefly, pathologists used a scoring sheet previously described

by Heng et al.24 and all these scores and diagnosis were integrated to reach a final consensus by the pathology review committee.

These scores and histologic type annotations are what we term as the 2016 annotation scheme and provide in Data S2. For the 2019

re-annotation, a conference call was done, and all the papillary and metaplastic carcinoma virtual slides were discussed by K.A.,

L.C.C, S.J.S. In the case of papillary carcinomas, they were re-classified into encapsulated, solid and invasive as defined by the

WHO 2019 classification.2 In cases where a true fibrotic core was not observed in papillary projections, the pathologists agreed

to give an annotation of IDC with pseudo-papillary features. Each case was re-annotated upon the final agreement arrived after

the discussion between the 3 pathologists.

BRCAmicroarrayMolecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset was obtained from the Eu-

ropean Genome-Phenome Archive (accession number: EGAS00000000083).40 The NKI113 microarray dataset was publicly avail-

able, retrieved4 and preprocessed as previously described.25 In all datasets, genes were median-centered within each dataset

and samples were standardized to zero mean and unit variance before other analyses were performed.

mRNA-seq analysis
Molecular profiles were retrieved from sources as mentioned above. Intrinsic subtyping was done using the PAM50 R function as

previously described8 and additional CLOW subtyping was done as previously described.25 Briefly, Claudin-low (CLOW) molecular

subtype can be identified using breast cancer cell line gene expression centroid-based predictors where some cell-lines show low

expression of claudin genes, which is one characteristic of claudin-low samples. Using the cell-line gene expression as training

data, the claudin-low centroid predictor predicts bulk tumor samples that are claudin-low. To add robustness to this centroid pre-

dictor, we simultaneously also examine the hierarchical clustering of these samples using the 1800 intrinsic gene list of Parker

et al.,8 and similarly look a group/cluster of tumors that show low expression of claudin genes. Lastly we call as ‘‘claudin-low’’
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those samples that are identified as claudin-low by both methods. The cluster of cluster assignments (CoCa) group information

was retrieved.41

DESeq2 (version 3.7, R software package version 3.5; https://bioconductor.org/packages/release/bioc/html/DESeq2.html) R

package was used for differentially expressed gene analysis.42 Raw mRNA data was used for TCGA-BRCA in DESeq2 differential

gene analysis as the package performs its own internal normalization. Differential expressed genes were considered significant using

a threshold of FDR < 0.05. Gene set enrichment analysis (GSEA) was conducted using Genepattern browser version 3.9.10.43 For

GSEA, the raw data was log transformed, upper quartile normalized and median centered. For GSEA reporting, we utilized the hall-

mark signatures (h.all.v6.2.symbols.gmt), immunological signatures (c7.all.v6.2.symbols.gmt), oncogenic signatures (c6.all.v6.2.-

symbols.gmt), KEGG pathway signatures (c2.cp.kegg. v6.2.symbols.gmt) and the gene ontology signatures (c5.all.v6.2.sym-

bols.gmt). In terms of the algorithm options, we set the ‘‘min.gene.size’’ to 10 genes.

For supervised hierarchical clustering analysis, we took the top 500 upregulated and top 500 downregulated genes for each of the

six individual histologic types as identified by DESeq2 DE analysis and combined them and removed the duplicates. Supervised hi-

erarchical clustering was done using Cluster 3.0 using the C clustering library version 1.59 and exported using Java Tree View version

1.2.0. Genelists utilized for clusterings can be found in Data S1. ConsensusClusterPlus R package version 3.8 was utilized for

consensus clustering analysis.44 CDF plots within the package were utilized to determine the optimal number of clusters.Proportion

of ambiguous clustering (PAC) was calculated using the methodology described by enbabao�glu et al.45

Differentiation Score Calculation
Differentiation score is an ancillary score to determine the level of differentiation of a breast tumor sample in regards to how closely

the gene expression of the tumor is similar to normal mammary cell types.25 For differentiation score, we utilized the algorithm devel-

oped previously to define a differentiation axis from DNAmicroarray datasets of three epithelial cell-enriched subpopulations: mam-

mary stem cells (MaSC), luminal progenitors (pL) and mature luminal cells (mL).25 Briefly this method utilizes distance weighted

discrimination (DWD) to determine the distance of greatest variation from MaSC to pL and pL to mL. Each tumor sample was pro-

jected onto the MaSC � pL axis and the pL � mL axis by calculating the inner product of the sample and the MaSC or mL vectors

identified by DWD. The difference of the two projected positions of each sample along the MaSC� pL�mL axis is referred to as the

differentiation score.25

Elastic net modeling
We analyzed the TCGA Pan-Cancer Atlas dataset, including the histologic annotations found within the clinical details file in the

PanCanAtlas publications page (https://gdc.cancer.gov/about-data/publications/pancanatlas) – (TCGA-Clinical Data Resource

(CDR) Outcome* - TCGA-CDR-SupplementalTableS1.xlsx) were used to identify mucinous histologic samples. The images of

these non-BRCA cases with a mucinous histologic type annotation were then re-validated by examining their respective virtual

slides in the digital archive database (http://cancer.digitalslidearchive.net/) and designated as mucinous carcinoma or MUC sam-

ples. The rest of the cancers in those tissue systems were then termed as non-MUC samples. The final cohort was 6017 cases

which were divided into 30% testing and 70% training datasets balanced for MUC cases through R package – sampling version

2.8. R package – caret was used to build elastic net generalized linear models using the training dataset. Tuning grid were deter-

mined with alphas over a range from 0.1 to 1 by 0.1 and a sequence of 100 lambdas. The minimum andmaximum of lambda values

were determined by fitting generalized linear models with each alpha value on training set (R package glmnet version 2.0.16). 200

rounds of Monte-Carlo cross validation with default training percentage of 0.75 (R package caret version 6.0.8) were used to select

the tuning parameters. The optimal parameter combination was determined to have the best classification accuracy. This model

was then applied to both the training and the testing data and ROC curves were generated to identify the performance of themodel

using R package ROCR.

Tumor Class specific DNA copy number identification and Mutation analysis
To identify tumor class specific copy number alteration (CNA), the TCGA-BRCA GISTIC2 gene-level copy number data was

downloaded from The Broad Institute TCGA GDAC Firehose with no further processing (all_data_by_genes.txt) which is avail-

able for 1070 breast cancer patients in TCGA. To identify CNA patterns across the 4 groups based on the transcriptomic dif-

ferentiation score (Basal, Low Differentiation, Luminal, and High Differentiation), ANOVA followed by Tukey’s post-test for pair-

wise comparisons was used. The ANOVA analysis used GISTIC2 gene-level gain/loss calls (�2 for high-level deletion, �1 for

loss, 0 for neutral events, 1 for gain and 2 for high-level amplification) to compare copy number values among the 4 broader

groups. ANOVA F statistics and p values were reported. P values were further adjusted by Benjamini-Hochberg multiple tests

correction.

For individual tumor class mutation analysis, publicly available TCGA-BRCA somatic mutation data was downloaded (Mutations –

mc3.v0.2.8.PUBLIC.maf.gz) (https://gdc.cancer.gov/about-data/publications/pancanatlas) and the waterfall plots were constructed

using R package GenVisR version 3.9. The somatic mutation data was available for 1066 samples.

The BRCA1/2 germline and somatic events data was available for 990 TCGA samples andwere annotated as bi-allelic-inactivation,

mono-allelic-inactivation and epigenetic-silencing based upon previous published work.46
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Immune Gene Signature Module Calculation andanalysis
Immune Gene Signature Module Calculation and Statistical
For each group (Basal, Low Differentiation, Luminal, and High Differentiation), we calculated 115 immune gene expression modules,

representingmultiple published immune related biological pathways and cell types.47 All gene expressionmodule scoreswere calcu-

lated as themedian of all individual gene expression values present in themodule for each sample in the 4 groups. Significant immune

gene modules were then analyzed between the Low Differentiation and High Differentiation groups using the two-class Significance

Analysis of Microarrays (SAM) implemented by the ‘‘samr’’ package version 3.0 in R.
Cell Genomics 1, 100067, December 8, 2021 e4
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