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Abstract
Many problems that appear in biomedical decision-making, such as diagnosing
disease and predicting response to treatment, can be expressed as binary classi-
fication problems. The support vector machine (SVM) is a popular classification
technique that is robust to model misspecification and effectively handles high-
dimensional data. The relative costs of false positives and false negatives can vary
across application domains. The receiving operating characteristic (ROC) curve
provides a visual representation of the trade-off between these two types of errors.
Because the SVM does not produce a predicted probability, an ROC curve can-
not be constructed in the traditional way of thresholding a predicted probability.
However, a sequence of weighted SVMs can be used to construct an ROC curve.
Although ROC curves constructed using weighted SVMs have great potential for
allowing ROC curves analyses that cannot be done by thresholding predicted
probabilities, their theoretical properties have heretofore been underdeveloped.
We propose a method for constructing confidence bands for the SVMROC curve
and provide the theoretical justification for the SVMROC curve by showing that
the risk function of the estimated decision rule is uniformly consistent across
the weight parameter. We demonstrate the proposed confidence band method
using simulation studies. We present a predictive model for treatment response
in breast cancer as an illustrative example.
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1 INTRODUCTION

Many important problems in biomedical decision-making
can be expressed as binary classification problems. For

example, one may wish to identify infants infected with
hepatitis C virus (HCV) from a sample of infants born to
infected mothers (Shebl et al., 2009), screen for prostate
cancer using prostate-specific antigen (Etzioni et al., 1999),
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or predict which breast cancer patients will respond to
treatment based on genetic characteristics (Fan et al., 2011).
In numerous applications, the costs of false positives and
false negatives may differ, and classificationmethodsmust
allow for unequal weighting of these errors. Classification
problems are often based on high-dimensional data or data
with complex structure, where it may be difficult to pose
a parametric model for the conditional mean response.
In such applications, it is important to have classifica-
tion methods that allow for properly weighting false posi-
tives and false negatives within a framework that does not
require restrictive modeling assumptions.
Understanding the accuracy of a classifier is important

if a classifier is to be used to inform decisions in practice.
Receiver operating characteristic (ROC) curve analyses are
often used to assess and compare the accuracy of classi-
fiers for a range of sensitivity and specificity values. (Zhou
et al., 2002; Pepe, 2003). Various methods for modeling
and estimating ROC curves have been proposed, including
parametric regression models (Pepe, 1997; McIntosh and
Pepe, 2002) and semiparametric regression models (Pepe,
2000; Cai et al., 2002; Cai and Dodd, 2008). Quantifying
the uncertainty around the performance of a classifier is
also necessary if a classifier is to be used in practice. Con-
structing confidence bands for the ROC curve is one way
to do this. Methods for ROC curve confidence bands can
involve estimating the biomarker distributions in the dis-
eased and nondiseased samples using parametric models
(Ma and Hall, 1993) or kernel density estimators (Jensen
et al., 2000; Claeskens et al., 2003; Horváth et al., 2008),
or using empirical distribution functions in combination
with the bootstrap (Campbell, 1994).
Machine learning techniques that output a continuous

score or predicted probability allow for straightforward
application of ROC curve methodology (see, eg, Spack-
man, 1989; Bradley, 1997; Provost and Fawcett, 1997, 1998).
However, there are fewer examples of applying ROC
curve methodology to classifiers that output only a class
label, such as the support vector machine (SVM; Cortes
and Vapnik, 1995). Platt (1999) proposed a method to
extract class probabilities from the output of the SVM (see
also Vapnik, 1998; Lin et al., 2007) by fitting parametric
models to the SVM class labels. Veropoulos et al. (1999)
proposed fitting a sequence of weighted SVMs to construct
an SVM ROC curve (see also Krzyżak et al., 1996; Lin,
2002; Zhang, 2004; Steinwart and Christmann, 2008).
However, there are no previously proposed methods for
constructing a confidence band for the SVM ROC curve.
The aforementioned confidence band methods assume
a scalar biomarker and thus cannot be directly applied
to the SVM ROC curve. Furthermore, the theoretical
properties of the SVM ROC curve have heretofore been
underdeveloped. We build on the work of Veropoulos et al.

(1999) by establishing a number of theoretical properties
of the SVMROC curve and developing a bootstrap method
for constructing confidence bands for the SVMROC curve.
There are numerous applications to motivate this work;

however, we focus on one primary illustrative applica-
tion, predicting which breast cancer patients will respond
to treatment. Genomic data provide a wealth of informa-
tion for this purpose. However, it is difficult to specify
a parametric model for response given genomic features
because of the high dimension of genomic data. Because
the SVM provides nonparametric classification (Steinwart
and Christmann, 2008), it is a natural choice for this prob-
lem. Furthermore, the costs of false positives and false
negatives differ significantly in this application: a patient
who is incorrectly predicted to respond may be subjected
to unnecessary treatment, while a patient who is incor-
rectly predicted to not respond may not receive a poten-
tially beneficial treatment. Thus, ROC curve analysis is
needed in order to determine whether a predictive model
for treatment response can be used in practice. A second
illustrative example, the diagnosis of infant hepatitis C, is
included in the Supporting Information.
There are a number of additional examples of weighted

SVMs in the statistical literature. Shin et al. (2014) pro-
posed fitting a sequence of weighted SVMs similar to the
approach discussed in this paper; however, their goal was
to construct estimates of class probabilities for the pur-
poses of dimension reduction, rather than to estimate an
ROC curve and construct confidence bands. Jiang et al.
(2008) proposed a method to construct confidence inter-
vals for the prediction error of the SVM; however, applying
their approach in the current setting would result in point-
wise confidence intervals for sensitivity and specificity,
rather than uniform confidence bands for the ROC curve.
In Section 2, we briefly review the method developed by

Veropoulos et al. (1999). In Section 3, we show a number
of theoretical results. Section 4 presents our proposed
confidence band method. In Section 5, we present a series
of simulation experiments to evaluate the operating char-
acteristics of the proposed bootstrap confidence bands.
In Section 6, we present an illustrative case study. We
conclude and discuss future research in Section 7. Proofs,
additional simulation results, an additional illustrative
example, and R code to implement the proposed method
are provided in the Web-based Supporting Information.

2 WEIGHTED SUPPORT VECTOR
MACHINES

Veropoulos et al. (1999) proposed an approach to construct-
ing an ROC curve using a sequence of weighted SVMs.
Here, we provide a summary of this approach. Assume
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that the available data are (𝐴𝑖, 𝐗𝑖), 𝑖 = 1, … , 𝑛, which com-
prise 𝑛 independent and identically distributed copies of
(𝐴,𝐗), where 𝐴 ∈ {−1, 1} is a class label (eg, in diagnostic
medicine, 𝐴 = 1 corresponds to a diseased individual
and 𝐴 = −1 corresponds to a nondiseased individual)
and 𝐗 ∈  ⊆ ℝ𝑝 are covariates. The goal is to estimate
a classifier that correctly identifies a patient’s class label
based on that patient’s covariates. Veropoulos et al. (1999)
introduced the idea of using a sequence of weighted
SVMs to control sensitivity and specificity in this context.
Consider minimizing the expected weighted misclassi-
fication, where each misclassification event is weighted
by the cost function 𝐶𝑎(𝛼) = {1 + (2𝛼 − 1)𝑎}∕2 = 𝛼1(𝑎 =
1) + (1 − 𝛼)1(𝑎 = −1), where 𝐶𝑎(𝛼) is the cost of misclas-
sification when the true class label is 𝐴 = 𝑎. In diagnostic
medicine, with 𝐴 = 1 corresponding to disease and
𝐴 = −1 corresponding to nondisease, 𝛼 determines the
relative weight placed on the sensitivity and specificity of
the test.When𝛼 = 1∕2, sensitivity and specificity are given
equal weight as in the zero-one misclassification error. Let
 denote a class of functions from into {−1, 1}. The opti-
mal classifier with respect to cost function 𝐶𝑎(𝛼) within
 is

�̃�𝛼 = argmin
𝐷∈

𝔼[1{𝐷(𝐗) ≠ 𝐴}𝐶𝐴(𝛼)]. (1)

For fixed𝛼 ∈ (0, 1) and a classifier𝐷, the plug-in estima-
tor of the weighted misclassification error is 𝔼𝑛1{𝐷(𝐗) ≠
𝐴}𝐶𝐴(𝛼), where 𝔼𝑛 is the empirical measure of the
observed data. Note that any classifier 𝐷(𝐗) can be repre-
sented as sign{𝑓(𝐗)} for some decision function 𝑓 ∶  →
ℝ; we will assume that the decision function is smooth
and thus 𝑓 belongs to a class of smooth functions,  . For
example, we can let  be the space of linear functions,
the space of polynomial functions, or the reproducing ker-
nel Hilbert space (RKHS) associated with the Gaussian
kernel (Steinwart and Christmann, 2008). The weighted
misclassification error associated with decision function 𝑓
is 𝔼[1{𝐴𝑓(𝐗) < 0}𝐶𝐴(𝛼)]. Minimizing the empirical ana-
log of the weighted misclassification, that is, the empirical
risk, is difficult due to the discontinuity of the indicator
function. Using the hinge loss, 𝜙(𝑢) = max(0, 1 − 𝑢), as a
surrogate loss function (Bartlett et al., 2006), an estimator
for the optimal decision function is

𝑓
𝜆𝑛
𝛼,𝑛 = argmin

𝑓∈

[
𝔼𝑛𝜙{𝐴𝑓(𝐗)}𝐶𝐴(𝛼) + 𝜆𝑛‖𝑓‖2], (2)

where ‖ ⋅ ‖ is a norm on  and 𝜆𝑛 is a penalty parameter.
We discuss how to choose a value of 𝜆𝑛 in Section 5. In
the following, we write 𝑓𝛼 in place of 𝑓𝜆𝑛𝛼,𝑛 to simplify
notation. The problem of estimating the optimal classifier

in (2) can be solved using the SVM introduced by Cortes
and Vapnik (1995).
We estimate the optimal classifier, �̃�𝛼, using

�̂�𝛼(𝐗) = sign{𝑓𝛼(𝐗)}. For any 𝛼 ∈ (0, 1), we can esti-
mate the sensitivity and specificity of the estimated
classifier using the empirical estimators 𝑠𝑒(𝑓𝛼) = 𝔼𝑛1(𝐴
= 1)1[sign{�̂�𝛼(𝐗)} = 1]∕𝔼𝑛1(𝐴 = 1) and 𝑠𝑝(𝑓𝛼) = 𝔼𝑛1

(𝐴 = −1)1[sign{�̂�𝛼(𝐗)} = −1]∕𝔼𝑛1(𝐴 = −1). Plotting
𝑠𝑒(𝑓𝛼) against 1 − 𝑠𝑝(𝑓𝛼) as functions of 𝛼 yields a non-
parametric estimator of the optimal ROC curve. The ROC
curve encodes a continuum of classifiers indexed by 𝛼; to
select a single classifier, there are a number of methods for
defining an optimal value, say 𝛼∗, for 𝛼. For example, one
could choose the 𝛼∗ that leads to the point on the ROC
curve closest to (0, 1) in Euclidean distance, the 𝛼∗ that
maximizes the sum of estimated sensitivity and specificity,
or the 𝛼∗ that maximizes the estimated sensitivity for a
fixed minimum specificity estimate (López-Ratón et al.,
2014). The choice of 𝛼∗ will depend on the clinical applica-
tion of interest. We classify an individual presenting with
covariates 𝐗 = 𝐱 as �̂�𝛼∗(𝐱).

3 THEORETICAL RESULTS

For any 𝛼 ∈ (0, 1), the estimated classifier is the sign of
𝑓𝛼, the minimizer of the empirical hinge loss in a class
 as defined in (2). For any function, 𝑓, define 𝛼(𝑓) =

𝔼(1[sign{𝑓(𝐗)} ≠ 𝐴]𝐶𝐴(𝛼)) to be the risk of 𝑓, and define
the 𝜙 risk of 𝑓 to be 𝛼,𝜙(𝑓) = 𝔼[𝜙{𝐴𝑓(𝐗)}𝐶𝐴(𝛼)]. Let
∗𝛼 = inf𝑓𝛼(𝑓) and ∗

𝛼,𝜙
= inf𝑓𝛼,𝜙(𝑓). Furthermore,

define 𝑓𝛼 = argmin𝑓∈𝛼(𝑓) and 𝑓
∗
𝛼 = argmin𝑓𝛼(𝑓),

that is, 𝑓𝛼 minimizes the risk over  and 𝑓∗𝛼 minimizes
the risk over all measurable functions mapping  into ℝ.
Define 𝑓∗

𝛼,𝜙
as in Theorem 4. Throughout, we assume that

𝑓∗
𝛼,𝜙
∈  , that is, that the function that minimizes the 𝜙

risk is contained within the chosen class. If this is not the
case, the consistency results given here will not hold; how-
ever, the estimated decision function will still yield a rea-
sonable approximation to 𝑓𝛼 due to the identity 𝛼(𝑓) ≤
𝛼,𝜙(𝑓).When𝛼 = 0, the optimal classifier assigns−1uni-
formly and when 𝛼 = 1, the optimal classifier assigns 1
uniformly. Focusing on 𝛼 ∈ (0, 1) will enable us to avoid
these trivial extremes. Nonetheless, many of our results
hold for all𝛼 ∈ [0, 1].Wewillmake this distinction explicit
as needed. Throughout, we assume that all requisite expec-
tations exist.
The following result gives a bound on the excess risk in

terms of the excess 𝜙 risk. The proof is similar to that of
Theorem 3.2 of Zhao et al. (2012) and uses Theorem 1 and
Example 4 of Bartlett et al. (2006). We omit the proof here.
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This result will be used later to show uniform consistency
of the risk of the estimated decision function.

Lemma 1. For any measurable 𝑓 ∶  → ℝ and any distri-
bution 𝑃 of (𝐗,𝐴),𝛼(𝑓) −∗𝛼 ≤ 𝛼,𝜙(𝑓) −∗

𝛼,𝜙
.

This result implies that the difference between the 𝜙
risk of the estimated decision function and the optimal
𝜙 risk is no smaller than the difference between the risk
of the estimated decision function and the optimal risk.
Therefore, we can consider the 𝜙 risk when proving con-
vergence results.
Next, we establish a number of consistency results for

the risk of the estimated decision function. We begin with
Fisher consistency. This result implies that estimation
using either the hinge loss or the zero-one loss will
yield the true optimal classifier given an infinite sample,
providing justification for using the proposed surrogate
loss function. The proof follows from an extension to the
proof of Proposition 3.1 of Zhao et al. (2012) and is in Web
Appendix B.

Theorem1. For any𝛼 ∈ [0, 1], if𝑓∗
𝛼,𝜙

minimizes𝛼,𝜙, then
𝐷∗𝛼(𝐱) = sign{𝑓

∗
𝛼,𝜙
(𝐱)} for almost all 𝐱 ∈  .

The following result establishes consistency of the risk
of the estimated decision function when estimation takes
place within an RKHS. We then extend this consistency by
showing that it is uniform in 𝛼. The proof of the following
result closely follows the proof of Theorem 3.3 of Zhao et al.
(2012) and is in Web Appendix B.

Theorem 2. Let 𝛼 ∈ [0, 1] be fixed and let 𝜆𝑛 be a sequence
of positive, real numbers such that 𝜆𝑛 → 0 and 𝑛𝜆𝑛 → ∞.
Let𝑘 be an RKHSwith kernel function 𝑘 and let ̄𝑘 denote
the closure of𝑘 . Then, for any distribution 𝑃 of (𝐗,𝐴), we

have that |𝛼(𝑓𝛼) − inf𝑓∈̄𝑘 𝛼(𝑓)| 𝑃#→ 0 as 𝑛 → ∞.
We next strengthen the consistency stated above by

showing that the convergence is uniform in 𝛼 when esti-
mation uses a linear, quadratic, polynomial, or Gaussian
kernel (see Steinwart and Christmann, 2008, for a discus-
sion of kernel functions usedwith the SVM). The following
lemma indicates that the estimated decision function lies
in a Glivenko-Cantelli (GC) class (Kosorok, 2008) indexed
by 𝛼, which will help us to extend the consistency stated
above to uniform consistency in 𝛼. The proof is in Web
Appendix B.

Lemma 2. Let 𝑓𝛼 be estimated using a linear, quadratic,
polynomial, or Gaussian kernel function. Then, {𝑓𝛼 ∶ 𝛼 ∈
[0, 1]} is contained in a GC class.

Given that 𝑓𝛼 and −𝑓𝛼 are contained in a GC class, we
have by Corollary 9.27 (iii) of Kosorok (2008), that 𝜙(𝑓𝛼)
and 𝜙(−𝑓𝛼) are contained in a GC class because 𝜙 is con-
tinuous. By Corollary 9.27 (ii) of Kosorok (2008), 1(𝐴 = 1)
𝜙(𝑓𝛼) and 1(𝐴 = −1)𝜙(−𝑓𝛼) are contained in a GC class
and thus, 𝐿𝛼,𝜙(𝑓𝛼) is contained in a GC class by Corollary
9.27 (i) of Kosorok (2008), where 𝐿𝛼,𝜙(𝑓) = 𝜙(𝐴𝑓)𝐶𝐴(𝛼). It

follows that sup𝛼∈[0,1] |̂𝛼,𝜙(𝑓𝛼) −𝛼,𝜙(𝑓𝛼)| 𝑃#→ 0, where
̂𝛼,𝜙(𝑓) = 𝔼𝑛𝜙{𝐴𝑓(𝐗)}𝐶𝐴(𝛼). This uniform convergence
result is used in the proof of Theorem 3, which is given in
Web Appendix B.

Theorem 3. Assume that 𝑓𝛼 is estimated using a lin-
ear, quadratic, polynomial, or Gaussian kernel. For any
sequence 𝜆𝑛 of positive, real numbers satisfying 𝜆𝑛 → 0 and
𝑛𝜆𝑛 → ∞ and any distribution 𝑃 of (𝐗,𝐴),

sup
𝛼∈[0,1]

|||||𝛼
(
𝑓𝛼

)
− inf
𝑓∈̄𝑘

𝛼(𝑓)
|||||
𝑃
#→ 0 (3)

as 𝑛 → ∞, where𝑘 is the RKHS associated with 𝑓𝛼 .

Note that we do not allow the sequence 𝜆𝑛 to depend on
𝛼, which is reflected in the implementation in Section 5.
Additional results, including continuity of the risk func-
tion, are given in Web Appendix A.

4 CONFIDENCE BANDS

In this section, we present a method for constructing con-
fidence bands for the ROC curve of 𝑓𝛼, which provide
an indication of how well the estimated classifier will
perform in future samples. A number of methods have
been proposed for constructing confidence bands for ROC
curves (Ma and Hall, 1993; Campbell, 1994; Jensen et al.,
2000; Claeskens et al., 2003; Horváth et al., 2008) in the
setting where a subject is classified as positive when a
single biomarker is larger than some threshold and the
ROC curve is constructed by varying the threshold across
the range of possible biomarker values. If classification is
based on a single biomarker (or some other score, such as a
predicted probability), then confidence bands can be con-
structed by approximating the biomarker distribution in
the diseased and nondiseased populations. In the current
setting, however, classification is based on𝑓𝛼(𝐗). Thus, the
biomarker itself varies across 𝛼, and constructing confi-
dence bands requires asymptotic results for 𝑓𝛼 viewed as
a stochastic process indexed by 𝛼 ∈ [0, 1]. Our approach
to constructing confidence bands requires the following
result, which characterizes the asymptotic distribution of
the estimated sensitivity and specificity of 𝑓𝛼, along with
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the consistency results given in Section 3. A proof of the
following result is provided in Web Appendix B.

Theorem 4. Let 𝑠𝑒(𝑓𝛼) be the true sensitivity, 𝑠𝑒(𝑓𝛼) be
the estimated sensitivity, 𝑠𝑝(𝑓𝛼) be the true specificity, and
𝑠𝑝(𝑓𝛼) be the estimated specificity of 𝑓𝛼 , where 𝑓𝛼 is defined
in (2), and assume that  is a space of linear or polynomial
functions. Define 𝑓∗

𝛼,𝜙
= argmin𝑓 𝔼[𝜙{𝐴𝑓(𝐗)}𝐶𝐴(𝛼)],

where the minimization is taken over all measurable
functions mapping  into ℝ, and assume that 𝑓∗

𝛼,𝜙
∈  .

Then,

√
𝑛

⎧⎪⎨⎪⎩
𝑠𝑒
(
𝑓𝛼

)
− 𝑠𝑒

(
𝑓𝛼

)
𝑠𝑝

(
𝑓𝛼

)
− 𝑠𝑝

(
𝑓𝛼

)
⎫⎪⎬⎪⎭
⇝

{
𝔾1(𝛼)

𝔾2(𝛼)

}

as 𝑛 → ∞, where𝔾1(𝛼) and𝔾2(𝛼) are mean zero Gaussian
processes with covariances and cross-covariance given in
Web Appendix A.

Let 𝑓𝑝𝑓(𝑓𝛼) = 1 − 𝑠𝑝(𝑓𝛼) be the false positive frac-
tion for the decision function 𝑓𝛼. Define 𝑓𝑝𝑓−1(⋅) such
that 𝑓𝑝𝑓−1{𝑓𝑝𝑓(𝑓𝛼)} = 𝛼, that is, 𝑓𝑝𝑓−1(𝑢) is the weight
𝛼 such that 1 − 𝑠𝑝(𝑓𝛼) = 𝑢. Let 0 < 𝛿 < 1∕2 be fixed. A
quantile bootstrap algorithm for constructing an asymp-
totically correct (1 − 𝛾)100% confidence band for the ROC
curve, 𝑠𝑒{𝑓𝑝𝑓−1(𝑢)}, 𝛿 < 𝑢 < 1, is as follows:

(1) Set a large number of bootstrap replications, B, a
grid 𝛿 = 𝑧1 < ⋯ < 𝑧𝐾 = 1, and a grid 0 = 𝛼1 < … <
𝛼𝑀 = 1.

(2) For 𝑚 = 1,… ,𝑀, compute the estimated ROC curve,
𝑅(𝛼𝑚) = {1 − 𝑠𝑝(𝑓𝛼𝑚), 𝑠𝑒(𝑓𝛼𝑚)}.

(3) For 𝑘 = 1,… , 𝐾, compute 𝑦(𝑧𝑘) by linearly interpolat-
ing 𝑅(𝛼𝑚).

(4) For 𝑏 = 1,… , 𝐵:
(a) Generate a weight vector 𝑊𝑏,𝑛,𝑖 = 𝜉𝑏,𝑖∕�̄�𝑏, where
𝜉𝑏,1, … , 𝜉𝑏,𝑛 are independent standard exponential
random variables and �̄�𝑏 = 𝑛−1

∑𝑛
𝑖=1 𝜉𝑏,𝑖 .

(b) For𝑚 = 1,… ,𝑀, set

𝑠𝑒𝑏
(
𝑓𝛼
)
= 𝔼𝑛

(
𝑊𝑏,𝑛1

(
𝐴 = 1

)
1
[
sign

{
𝑓𝛼(𝐗)

}
= 1

])
/
𝔼𝑛

{
𝑊𝑏,𝑛1(𝐴 = 1)

}
,

𝑠𝑝𝑏
(
𝑓𝛼

)
= 𝔼𝑛

(
𝑊𝑏,𝑛1

(
𝐴 = −1

)
1
[
sign

{
𝑓𝛼(𝐗)

}
= −1

])
/
𝔼𝑛

{
𝑊𝑏,𝑛1(𝐴 = −1)

}
,

and 𝑅𝑏(𝛼𝑚) = {1 − 𝑠𝑝𝑏(𝑓𝛼𝑚), 𝑠𝑒𝑏(𝑓𝛼𝑚)}.
(c) For 𝑘 = 1,… , 𝐾, compute 𝑦𝑏(𝑧𝑘) by linearly inter-

polating 𝑅𝑏(𝛼𝑚).

(5) Let 𝑦𝑝(𝑧𝑘) be the 𝑝th quantile of {𝑦𝑏(𝑧𝑘) ∶ 𝑏 =
1,… , 𝐵} and let 𝑝∗ be the largest 𝑝 ∈ [0, 1] such that
𝑦𝑝
∗∕2(𝑧𝑘) ≤ 𝑦𝑏(𝑧𝑘) ≤ 𝑦

1−𝑝∗∕2(𝑧𝑘) for all 𝑘 = 1,… , 𝐾
for at least (1 − 𝛾)𝐵 bootstrap samples.

(6) Set 𝑦𝓁(𝑧𝑘) = 𝑦𝑝
∗∕2(𝑧𝑘) and 𝑦𝑢(𝑧𝑘) = 𝑦1−𝑝

∗∕2(𝑧𝑘).

The fact that the ROC curve may be discontinu-
ous at 0 necessitates starting the confidence bands at
some 𝛿 > 0. One can also use alternate choices for the
weights, for example, a multinomial weight vector𝑊𝑏,𝑛 =
(𝑊𝑏,𝑛,1, … ,𝑊𝑏,𝑛,𝑛)

⊺ with probabilities (1∕𝑛,… , 1∕𝑛) and 𝑛

trials. Let
𝑃
⇝
𝑊
denote convergence in probability over𝑊, as

defined in Section 2.2.3 and chapter 10 of Kosorok (2008).
The following result states the consistency of the bootstrap.

Corollary 1. Let 𝑠𝑒𝑊(𝑓𝛼) = 𝔼𝑛(𝑊1(𝐴 = 1)1[sign{𝑓𝛼(𝐗)}
= 1])∕𝔼𝑛{𝑊1(𝐴 = 1)} and define 𝑠𝑝𝑊(𝑓𝛼) similarly.
Let 𝑅𝑊(𝛼) = {1 − 𝑠𝑝𝑊(𝑓𝛼), 𝑠𝑒𝑊(𝑓𝛼)} and let 𝑅(𝛼) be as

defined above. Then, for any 0 < 𝛿 < 1∕2, 𝑅𝑊(𝛼)
𝑃
⇝
𝑊
𝑅(𝛼)

in 𝓁∞([𝛿, 1]).

Proof. By Lemmas 12.7 and 12.8 of Kosorok (2008), taking
the inverse of a bounded, monotone function is Hadamard
differentiable under mild regularity conditions. The result
now follows by Theorem 4 above and Theorems 2.6 and 2.9
of Kosorok (2008). □

Thus, {𝑦𝓁(𝑧𝑘), 𝑦𝑢(𝑧𝑘)}will cover 𝑦(𝑧𝑘) across 𝑘 = 1,… , 𝐾
with probability 1 − 𝛾 for large enough 𝑛 and 𝐵. In addi-
tion to the linear and polynomial SVM, this procedure will
work for any classifier such that the estimated decision
function is in a Vapnik-Chervonenkis (VC) class, such as a
logistic regression classifier.

5 SIMULATION EXPERIMENTS

To investigate the performance of classification using a
weighted SVM and the resulting ROC curves and con-
fidence bands, we use the following generative model.
Let 𝐗 be generated according to 𝐗 ∼ 𝑁𝑝(𝜇𝐙, 𝜎2𝐼), where
𝐙 is equal to a vector of ones with probability 𝑞 and a
vector of negative ones with probability 1 − 𝑞 and 𝐼 is a
𝑝 × 𝑝 identity matrix. Thus, 𝐗 is a mixture of multivari-
ate normal distributions with mixing probability 𝑞. Let
𝜋(𝐗) = expit(𝐗⊺𝛽) for a 𝑝 × 1 vector 𝛽, where expit(𝑢) =
exp(𝑢)∕{1 + exp(𝑢)}. Given 𝐗, we let 𝐴 be equal to 1
with probability 𝜋(𝐗) and −1 with probability 1 − 𝜋(𝐗).
Because 𝜋(𝐗) depends on 𝐗 only through a linear func-
tion of 𝐗, we refer to this model below as the linear
generative model. We also consider a generalization of
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F IGURE 1 ROC curves and 95% confidence bands for 𝑛 = 500, 𝑝 = 2, and 𝑞 = 0.25, when the true model is linear (left) and nonlinear
(right).

the above model, where 𝜋(𝐗) = expit(𝐗⊺𝛽 + 𝑋21 + 𝑋
2
2 +

4𝑋1𝑋2), which we refer to below as the nonlinear gener-
ative model.
We implemented the weighted SVM in R software (R

Core Team, 2016) using the kernlab package (Karatzoglou
et al., 2004). Each simulated data set is divided into
training and testing sets with 70% of the data used for
training the SVM and 30% used to estimate sensitivity
and specificity. The penalty parameter, 𝜆𝑛, is estimated
using cross-validation within the training data for 𝛼 = 0.5,
and the resulting tuning parameters are used to fit the
weighted SVM for all 𝛼 on a grid over (0, 1). Tuning once
at 𝛼 = 0.5 is needed to reduce the computational burden
compared to tuning separately for each 𝛼. We applied the
proposed method to data sets simulated according to the
linear and nonlinear generative models with 𝑛 = 250, 500,
𝑝 = 2, 5, 10, 𝑞 = 0.05, 0.25, 𝜎 = 0.75, and 𝜇 = 0.25. When
𝑝 = 2, 5, we use 𝛽 = (2, 1)⊺ and 𝛽 = (2, 1, … , 1)⊺, respec-
tively. When 𝑝 = 10, we use 𝛽 = (2, 1, 1, 1, 1, 0, … , 0)⊺,
that is, noise variables are introduced for the case where
𝑝 = 10.
Figure 1 below contains bootstrap confidence bands for

one simulated replication of the linear SVM applied to
the linear and nonlinear generative models when 𝑛 = 500,
𝑝 = 2, and 𝑞 = 0.25. The true ROC curve, approximated
using a large testing set of size 100 000 is also plotted. The
plots in Figure 1 demonstrate that the proposed quantile
bootstrap produces confidence bands that capture the true
ROC curve and are sufficiently narrow as to provide use-
ful inference about the future performance of an estimated
SVM classifier.

TABLE 1 Estimated coverage probabilities and area between
90% confidence band curves

Coverage
probability

Area between
curves

𝒏 𝒑 𝒒

Linear
model

Nonlinear
model

Linear
model

Nonlinear
model

250 2 0.05 0.85 0.86 0.31 0.37
0.25 0.96 0.93 0.31 0.36

5 0.05 0.83 0.93 0.28 0.38
0.25 0.88 0.92 0.25 0.36

10 0.05 0.83 0.95 0.30 0.40
0.25 0.88 0.93 0.29 0.38

500 2 0.05 0.95 0.93 0.24 0.27
0.25 0.92 0.96 0.23 0.27

5 0.05 0.88 0.95 0.22 0.28
0.25 0.96 0.93 0.18 0.26

10 0.05 0.86 0.93 0.23 0.29
0.25 0.96 0.94 0.20 0.27

Table 1 contains the proportion of 100Monte Carlo repli-
cations for which the true ROC curve was fully contained
within the 90% confidence bands, along with area between
the upper and lower confidence bands. Independent test-
ing sets of size 100 000 were used to approximate the true
ROC curve. Confidence bands for each replication were
based on 1000 bootstrap samples.
We observe that, across 𝑛, 𝑝, and 𝑞, the proposed quan-

tile bootstrap method provides approximately 90% cover-
age with the area between curves decreasing for larger
sample sizes.
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TABLE 2 Estimated coverage probabilities, area between 90%
confidence band curves, and area under the curve when covariates
are not all normal

𝒏 𝒑 𝒒

Coverage
probability

Area
between
the curves

Area under
the curve

250 5 0.05 0.95 0.27 0.87
0.25 0.96 0.26 0.88

10 0.05 0.94 0.28 0.87
0.25 0.96 0.27 0.88

500 5 0.05 0.97 0.20 0.87
0.25 0.98 0.20 0.88

10 0.05 0.99 0.19 0.89
0.25 0.96 0.18 0.90

To examine the performance of the proposed method
when covariates are not all normally distributed, we
used the following generative model. As before, let
(𝑋3, … , 𝑋𝑝) ∼ 𝑁𝑝−2(𝜇𝐙, 𝜎

2𝐼) with 𝐙 equal to a vector of
ones with probability 𝑞 and negatives ones with proba-
bility 1 − 𝑞. Let 𝑋1 be a Bernoulli random variable equal
to 1 with probability expit(𝑋3) and let 𝑋2 be a Poisson
random variable with mean exp(𝑋3∕4). As before, let
𝜋(𝐗) = expit(𝐗⊺𝛽), and let 𝐴 be equal to 1 with proba-
bility 𝜋(𝐗). We used 𝛽 = (1, 1, 2, 1, 0) for 𝑝 = 5 and 𝛽 =
(1, 1, 2, 1, 1, 0.5, 0.5, 0, 0, 0) for 𝑝 = 10. We let 𝜇 = 0.25 and
𝜎 = 0.75. Table 2 contains estimated coverage probabili-
ties for 90% confidence bands, area between the confidence
band curves, and area under the ROC curve for the lin-
ear SVM, averaged across 100 Monte Carlo replications.
Each confidence band is based on 1000 bootstrap samples,
and 70% of the data is used to train the weighted SVM in
each replication.
The proposed confidence band method achieves greater

than 90% coverage, with area between the curves decreas-
ing with larger sample size. Area under the curve indicates
that the weighted SVM can be used for classification in
the presence of covariates that are not normally dis-
tributed. Additional simulation results are given in Web
Appendix C in the Supporting Information.

6 APPLICATION TO DATA

We apply the weighted SVM to the problem of predicting
treatment response among patients with breast cancer.
Many breast cancer patients will receive chemotherapy
prior to surgery, called neo-adjuvant therapy, with the goal
of shrinking the tumor to allow for a less invasive surgery.
Predictive models for treatment response have the poten-
tial to aid physicians making treatment decisions; patients
who are likely to respond to neo-adjuvant therapy should

F IGURE 2 ROC curves for predicting response to treatment
among breast cancer patients with 95% confidence bands for the lin-
ear SVM ROC curve

receive it, while patients who are unlikely to respond may
achieve better outcomes with chemotherapy administered
after surgery. The consequences of false positives and false
negatives differ significantly for this classification prob-
lem. Although a patient who is incorrectly predicted to be
a responder will be subjected to unnecessary treatment, a
patient who is incorrectly predicted to be a nonresponder
may be denied treatment that would have been beneficial.
A low response rate can cause an unweighted classifier to
produce high specificity at the expense of low sensitivity.
This would result in a large proportion of patients who
would have responded being incorrectly predicted as
nonresponders, potentially missing out on beneficial
treatment.
The data available for this analysis consist of 323

patients with complete data. For each patient, we cal-
culated a collection of 512 gene expression signatures,
called modules, each of which is a function of patient
gene expression data (Fan et al., 2011). We also observe a
variety of clinical variables, for example, age and tumor
stage. The data were divided into training and testing
sets with 70% used to train the model. Figure 2 contains
ROC curves for predicting response to treatment using the
linear and Gaussian SVM, logistic regression with LASSO
penalty (Tibshirani, 1996), and random forests (Breiman,
2001), along with confidence bands for the linear SVM.
Each method performs equally well; each ROC curve falls
within the linear SVM ROC curve confidence bands for
much of the interval between 0 and 1, with the curves for
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TABLE 3 Comparison of methods applied to breast cancer data

Method AUC 𝒔𝒆 (optimal) 𝒔𝒑 (optimal) 𝒔𝒆 (unweighted) 𝒔𝒑 (unweighted)
Gaussian SVM 0.74 0.67 0.72 0.10 1.00
Linear SVM 0.79 0.90 0.63 0.19 0.97
Random forest 0.74 0.82 0.65 0.05 0.99
Logistic LASSO 0.75 0.73 0.72 0.00 1.00

the Gaussian SVM, random forest, and logistic regression
falling outside the confidence bands close to 1. Table 3
contains AUC and optimal sensitivity and specificity for
each method along with the sensitivity and specificity of
the unweighted versions of each method. Although the
linear SVM achieves the best AUC on these data, the wide
confidence bands indicate large variability in the ROC
curve for this classifier. Each method achieves a better
balance between sensitivity and specificity after proper
weighting. Unweighted classification results in close to
perfect specificity at the expense of very low sensitivity for
each method. This is likely due to the imbalance in the
data (only 22% of patients in the sample respond).
We also apply the weighted SVM to a cohort study of

mother-to-infant transmission of HCV (Shebl et al., 2009).
In this study, infants born to infected mothers were tested
for HCV RNA using a polymerase chain reaction test and
HCV antibodies using an enzyme-linked immunosorbent
assay test. Mothers in the study were also tested for HCV
RNA and antibodies during pregnancy. We applied the
method of Veropoulos et al. (1999) to construct an SVM
classifier for infant diagnosis of HCV using the results of
diagnostic tests from the infants and mothers, and con-
structed confidence bands for theROCcurve using the pro-
posed approach. Full results are given in Web Appendix D
in the Supporting Information.

7 CONCLUSION

Awide variety of problems in biomedical decision-making
can be expressed as classification problems, such as diag-
nosing disease and predicting response to treatment. In
some clinical applications, false positives may have dif-
ferent costs from false negatives; classification methods
that can properly weight sensitivity and specificity and
estimate an ROC curve are needed, along with inference
methods for the ROC curve. Constructing an ROC curve
using a sequence of weighted SVMs has been considered
by Veropoulos et al. (1999). We have established the theo-
retical justification for the SVM ROC curve and provided
a bootstrap method to construct confidence bands for the
SVM ROC curve.
There is great potential for research in applyingmachine

learning to diagnostic medicine and other biomedical
decision-making problems. Methods of variable selection

for theweighted SVM (Dasgupta et al., 2019) in this context
would be an important step forward for this research.
Other areas of future work may include developing meth-
ods to accommodate biomarker measurements that are
taken at different time points from the same patient.
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