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Multiomics in primary and metastatic 
breast tumors from the AURORA US 
network finds microenvironment and 
epigenetic drivers of metastasis

The AURORA US Metastasis Project was established with the goal to identify 
molecular features associated with metastasis. We assayed 55 females with 
metastatic breast cancer (51 primary cancers and 102 metastases) by RNA 
sequencing, tumor/germline DNA exome and low-pass whole-genome 
sequencing and global DNA methylation microarrays. Expression subtype 
changes were observed in ~30% of samples and were coincident with DNA 
clonality shifts, especially involving HER2. Downregulation of estrogen 
receptor (ER)-mediated cell–cell adhesion genes through DNA methylation 
mechanisms was observed in m et as ta ses. M ic ro en vi ro nment d                 i        f                   e      r  e nces 
varied according to tumor subtype; the ER+/luminal subtype had lower 
fibroblast and endothelial content, while triple-negative breast cancer/
basal metastases showed a decrease in B and T cells. In 17% of metastases, 
DNA hypermethylation and/or focal deletions were identified near HLA-A 
and were associated with reduced expression and lower immune cell 
infiltrates, especially in brain and liver metastases. These findings could 
have implications for treating individuals with metastatic breast cancer with 
immune- and HER2-targeting therapies.

A great deal of effort has gone into understanding the molecular causes 
of metastatic breast cancer (MBC), to which ~45,000 individuals per 
year succumb in the United States1. An early focus on metastatic dis-
ease has been to identify somatic DNA-based alterations that might be 
unique to this setting and/or that may be clinically actionable, especially 
when metastasis surgical resection may not be a viable option. Numer-
ous seminal publications on MBC genomics have shown that almost 
no recurrent mutations are unique to the metastatic landscape, with 
perhaps the exception of ESR1 mutations, most of which are thought to 
be tied to endocrine therapy resistance2–5. Instead, modestly increased 
frequencies of known pathogenic somatic variants (that is, TP53, PTEN 
and RB1) and/or altered mutational signatures have been identified 
in metastases6, as have similarly modest increases in the frequency 
of DNA amplifications/deletions2,7. Thus, much of the aggressive 

behavior of metastatic disease remains unexplained by DNA-based 
changes, invoking the need for a multiomic evaluation of this disease 
setting. Among the most impactful therapeutic advances in MBC has 
been the development and use of CDK4/CDK6 inhibitors8–10, novel 
HER2-directed agents11,12 and immune checkpoint inhibitors (ICIs) 
targeting CTLA4, PD-1 or PD-L1 (refs. 13–15). These latter therapies 
target the immunosuppressive tumor immune microenvironment, thus 
highlighting the importance of non-tumor-intrinsic factors as a major 
determinant of disease outcomes. Human leukocyte antigen (HLA) 
class I downregulation could also be a barrier to effective T cell-based 
immunotherapy. Alterations in major histocompatibility complex 
(MHC) class I molecules can prevent tumor cells from being recog-
nized by cytotoxic lymphocytes16–18. In BC, ICIs have gained a role in 
both the early-stage and metastatic settings, albeit with some mixed 
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list21 also identified the individuality of each primary tumor–metas-
tasis pair, where 31 of 39 pairs were coclustered in the dendrogram  
(Fig. 1d), as seen in other studies of metastases22,23. To quantify the 
degree of similarity between pairs, we compared the average cor-
relation between random pairs and matched pairs (Extended Data  
Fig. 3a–d). These comparisons revealed that overall, primary tumors are 
more similar to paired metastatic samples than to other breast tumors. 
Lastly, the somatic mutation landscape identified TP53, KMT2C, FLG 
and PIK3CA as the most frequently mutated genes, together with the 
presence of ESR1 mutations in metastases from four individuals with 
estrogen receptor-positive (ER+) BC AF94, AER2, AD9I and AD9E (Fig. 
1e). Similarly, most somatic mutations within bona fide BC driver genes 
(defined in TCGA) found in AURORA primary tumors were also pre-
sent in the paired metastasis (Fig. 1e). TP53 and FLG genes were more 
frequently mutated in metastases than in primary tumors (66% versus 
33% (P = 0.006) and 28% versus 3% (P = 0.003), respectively); however, 
this finding did not reach statistical significance after false discovery 
rate (FDR) adjustment. For the somatic DNA copy number landscape, 
we calculated 533 recurrent DNA segment-level scores (Methods and 
Supplementary Table 8) and observed that 11 segments were found 
to be more frequently amplified in metastases (q < 0.05). Of these 11 
segments, all overlapped an amplified region found in Bertucci et al.2, 
and 2 overlapped amplified regions found in Aftimos et al.3 related to 
MYC and MDM4 amplifications.

Gene expression subtype switching and genomic signature 
differences
To evaluate gene expression differences between primary tumors and 
their metastases, we performed PAM50 molecular subtyping from 
RNAseq data for each of the 123 specimens21,24 and tested subtype con-
cordance within each individual (Fig. 2a,b). Of the 39 RNAseq cases 
tested, 13 of 39 showed subtype ‘switching’ between a primary tumor 
and its metastasis. We note that the normal-like distinction typically 
reflects low tumor cellularity (tumor cellularity and ESTIMATES scores 
are in Supplementary Table 2); therefore, if we disregard switching 
to or from the normal-like group, then the basal-like phenotype is 
the most stable, with 15 of 16 pairs being basal-like in all specimens. 
Conversely, the ‘luminal’ phenotypes that include Luminal A (LumA), 
Luminal B (LumB) and HER2 enriched (HER2E), experienced subtype 
switching in 8 of 19 individuals. We also performed TNBC subtyping25 
on the TNBC samples (Extended Data Fig. 2), and, interestingly, we 
observed a decreased frequency of the immunomodulatory (IM) sub-
type, from 13% in the primary tumor to 2% in the metastatic setting 
(Supplementary Table 2).

We next performed additional RNAseq-based statistical analyses 
specifically comparing primary tumors to various groupings of the 
metastases. We first transformed the gene expression data into a set 
of 749 previously published gene expression signatures representing 
many features of tumor cells and their microenvironment, including 
>100 signatures of immune cells, which showed significant correla-
tion with pathologist-assessed percent immune cell infiltration and 
with DNA methylation-based assessments of leukocyte infiltration26,27 
(Extended Data Fig. 4a–d); the complete list of signatures is shown in 
Supplementary Table 2. Throughout our analyses, we relied on multiple 

results19, thus highlighting the need for an improved understanding 
of the MBC-intrinsic and MBC-extrinsic landscapes. Here, we present 
results from the AURORA US retrospective metastatic project that, 
along with the AURORA EU project3, represent two of the most ambi-
tious programs to improve our molecular knowledge of MBCs.

Results
Clinical features of the cohort and global genomic patterns
A consortium of academic medical centers in the United States was 
formed (AURORA US Metastatic Project) based on the infrastructure 
of the Translational Breast Cancer Research Consortium to pursue a 
multiplatform genomic study of matched metastatic and primary BCs, 
similar to The Cancer Genome Atlas (TCGA) effort on primary BCs20. 
Eligibility criteria for this retrospective study included the availability of 
a fresh-frozen (FF) metastatic specimen, its associated primary tumor 
(FF or formalin-fixed paraffin-embedded (FFPE) samples), a source 
of normal DNA and corresponding tumor pathology and molecular 
analyte metrics (Fig. 1a). These requirements identified 55 individu-
als, including 19 individuals with more than one metastasis analyzed; 
20 participant samples were collected at autopsy (representing the 
individuals with more than one metastasis). The clinical demograph-
ics of this group constituted a young cohort with a median age at pri-
mary diagnosis of 49 years, of which 18% were African American and 
7% were of Hispanic ethnicity. In the metastatic setting, these individu-
als received a median of three lines of systemic therapy. As might be 
expected, the overall survival of these individuals was generally poor 
and differed according to clinical subtype (Extended Data Fig. 1a,b). 
The median overall survival from BC diagnosis was 4.5 years and from 
metastatic diagnosis was ~2 years. Compared to TCGA primary tumors, 
the AURORA cohort also had a higher frequency of triple-negative BC 
(TNBC) and basal-like primary tumors (Extended Data Fig. 1c,d). The risk 
of recurrence score-based genomic features and the proliferation score 
itself were higher in metastatic samples than in AURORA and TCGA 
primary tumors (Extended Data Fig. 1e–g). Metastases were obtained 
from multiple sites, with the most common being liver (n = 28), lung 
(n = 13), lymph nodes (n = 12), brain (n = 11) and 16 other sites; the rela-
tionships between clinical or genomic subtype and site of metastasis 
are shown in Extended Data Fig. 2. Additional clinical demographics 
are shown in Supplementary Table 1.

Tumor DNA and RNA were isolated from each specimen and used in 
four different assays: DNA exome and low-pass whole-genome sequenc-
ing (WGS; tumor and normal), whole-transcriptome RNA sequencing 
(RNAseq) using rRNA depletion and DNA methylation microarrays. In 
total, 88 of 153 specimens had all four assays successfully performed, 
and 141 of 153 had three of four completed (Fig. 1b); this multiplatform 
genomic dataset of 102 metastases and 51 paired primary tumors thus 
represents an unprecedented resource for the study of MBC. Global 
profiling of the DNA methylation landscape using the top 5,000 most 
variably methylated CpGs displaying cancer-associated hypermethyla-
tion showed a remarkable conservation of overall methylation profiles 
within most primary tumor–metastasis pairs (Fig. 1c); indeed, 32 of 
36 tumor–metastasis pairs showed the highest correlation to each 
other. Similar to the DNA methylation findings, gene expression-based 
hierarchical clustering using a 1,710-gene breast tumor ‘intrinsic’ 

Fig. 1 | Study design and global genomic patterns of metastatic breast 
tumors. a, Cohort description of the AURORA Metastatic Project. b, Diagram of 
the shared or individual tumor DNA methylation, WGS/whole-exome sequencing 
(WES) and RNAseq data successfully performed on each of the 55 participants; 
DNAme, DNA methylation; prim, primary; met, metastasis. c, Global profiling 
of the DNA methylation landscape using the top 5,000 most variable cancer-
associated hypermethylated CpGs in 97 paired and 34 unpaired primary and 
metastatic tumors. Samples were intentionally ordered by participant to visually 
inspect the within-participant conservation of DNA methylation patterns.  
d, Supervised hierarchical cluster analysis of 102 paired and 21 unpaired primary 

and metastatic RNA-sequenced tumors using the so-called 1,900 intrinsic  
gene list (~1710 genes found in this dataset)21. e, OncoPrint panel of DNA  
somatic mutations displaying 37 of the most frequently mutated genes in  
41 primary and 93 metastatic tumors. The percentage on the right indicates 
the mutation frequency of each gene across samples; LumA, Luminal A; LumB, 
Luminal B, Claudin, Claudin-low; normal, normal-like; Del, deletion; Ins, 
insertion. This figure was partly generated using Servier Medical Art, provided 
by Servier, licensed under a Creative Commons Attribution 3.0 unported license 
(smart.servier.com).
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validated immune cell signatures, including many that have shown 
prognostic and predictive value24,27–29, as our main measures of immune 
cell presence/involvement. These immune signatures include many 

focused on adaptive immunity and include CIBERSORT signatures 
of T cells and B cells30 and signatures of cooperating immune cells, 
including an IgG signature31, a B cell/T cell cooperativity signature32 
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and a GP2-immune-metagene signature (Methods). We performed 
supervised analyses of all primary tumors versus all metastases using 
this library of signatures and identified 135 signatures as being differen-
tially expressed (q < 0.05; Extended Data Fig. 5a), including signatures 

of fibroblasts/stromal cells and endothelial cells and many adaptive 
immunity signatures as being lower in metastases. However, when 
supervised analyses were performed within a gene expression subtype, 
which is known to associate with the likelihood of metastasis33,34, then 
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Fig. 2 | Subtype switching and supervised analysis of gene expression 
signatures between primary and metastatic tumors. a, Overall molecular 
intrinsic subtype change between 39 participant-matched primary breast and  
1 or more metastatic tumors. b, Participant-specific molecular subtype changes 
in 39 participant-matched primary breast and 1 or more metastatic tumors.  
c,d, Heat maps of some representative signatures that are significantly different 
between primary and metastatic tumors in luminal/HER2E (n = 16 primary versus 
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14 metastatic tumors; d). Significance of the differences between primary tumors 
and metastases were calculated using LMMs (q < 0.01). Significant signatures 

are row ordered from high to low according to β-coefficients (or regression 
coefficients) and divided according to upregulated (positive) or downregulated 
(negative) in metastasis. Individuals are column ordered according to PAM50 
molecular subtype and divided according to primary tumor and metastasis. 
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subtype-specific differences were observed (Fig. 2c,d). Specifically, 
luminal/ER+ subtype metastases (LumA, LumB and HER2E combined) 
showed low expression of fibroblast and endothelial signatures, 
and very few adaptive immune features were different. Conversely, 
basal-like/TNBC metastases had significantly lower expression of adap-
tive immune features, including multiple T cell-, B cell-, natural killer 
(NK) cell- and HLA-related signatures, while signatures of fibroblasts 
and endothelial cells were unchanged (Fig. 2d).

We next asked if there were expression signature differences 
according to site of metastasis, and here we focused on the three most 
frequent sites (that is, liver, lung and brain). Using only the AURORA 
dataset, testing of primary versus paired brain metastases yielded 
48 signatures as being lower in brain metastases, most of which were 
features of immunity and fibroblasts/stromal cells (Extended Data 

Fig. 5b). Supervised analysis of liver metastases versus their primary 
tumors yielded 22 signatures as differentially expressed (Extended 
Data Fig. 5c), while a similar analysis of lung metastases yielded no 
significant signatures. The small number of differentially expressed 
features suggested that we may be limited by our sample size; there-
fore, we obtained a second dataset of primary tumor–metastasis pairs 
from our University of North Carolina (UNC) Rapid Autopsy Program 
(RAP; 2 primary tumor–metastasis pairs, 10 primary tumor–multi-
ple metastasis pairs and 22 unpaired metastases represented by 82 
specimens) and a third dataset from the public domain that had 102 
primary tumor–metastasis pairs from the GEICAM/2009-03 Conver-
tHER (GEICAM) trial22. Using this RNAseq combined cohort to compare 
primary tumors and liver metastases (n = 58 tumors, 27 primary tumors 
and 31 metastases) yielded a larger set of significant signatures that 
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included many adaptive immunity signatures as being lower in liver 
metastasis (Extended Data Fig. 5e). In addition, the combined cohort 
allowed us to refine our analysis of brain metastases in the setting of 
the basal-like/TNBC phenotype (n = 13 tumors, 5 primary tumors and 8 
metastases), which also yielded more significant signatures, including 
upregulated cell differentiation-related signatures and lower immune 
and stromal-related signatures (Extended Data Fig. 5d). Lastly, the 
combined analysis of primary lung metastases (n = 36 tumors, 18 pri-
mary tumors and 17 metastases) still yielded no significant signatures.

These comparative analyses suggest that immune features may 
systematically vary according to site of metastasis. To directly address 
this hypothesis, we took advantage of the combined AURORA–RAP 
datasets that contain 14 participants with at least two metastases ana-
lyzed by RNAseq (one of which is from the liver) to examine immune 
signature levels in different metastatic sites within the same individual. 
This analysis showed that in 9 of 14 individuals, the lowest levels of the 
GP2-immune-metagene signature were in liver metastases (Fig. 3a,b), 
and in many of these individuals, this immune signature is lower in the 
liver metastases than in the matched primary tumor but is often higher 
in lung metastases (Fig. 3a,b). Next, we performed statistical testing 
using the combined AURORA–RAP–GEICAM cohort and comparing 
liver to lung metastases and liver to lymph node metastases, both of 
which demonstrated significantly decreased immune signatures in 
liver metastases (Supplementary Table 3). We also compared liver 
metastases and brain metastases and saw 76 differential signatures 
that were primarily non-immune related (except for higher γδ T cells 
in brain metastases). When brain metastases were compared to lung 
or lymph node metastases, brain metastases also demonstrated lower 
expression of immune-associated signatures.

Finally, to evaluate the gene expression signatures as a predictive 
variable in survival analysis, we performed Cox proportional hazard 
models from time of BC diagnosis to death (overall survival) in the 
AURORA cohort. The major determinant of survival in this cohort 
was, as might be expected, a luminal/ER+-related (better outcomes) 
signature versus a basal-like related phenotype signature (worse out-
comes). When adjusting for clinical or molecular subtype, the main 
survival findings were immune-related signatures that predicted better 
outcomes (Supplementary Table 4).

HLA-A dysregulation and impact on antitumor immunity
The decreased expression of an HLA metagene signature in basal-like/
TNBC metastases led us to examine the multiplatform data of the 

individual genes comprising this signature, including HLA-A, HLA-B, 
HLA-C and B2M. Examining promoter CpG islands for HLA-A, HLA-B, 
HLA-C and B2M, we identified HLA-A methylation in 23 tumors (12 indi-
viduals), and HLA-A promoter methylation was significantly more fre-
quent in metastases than in primary tumors when comparing unpaired 
data (P = 0.035), whereas paired analyses were not significant but trend-
ing in the same direction (Fig. 4a and Extended Data Fig. 6a). By con-
trast, only three tumors (one individual) demonstrated methylation 
at HLA-B, and only one tumor had HLA-C or B2M methylated (Fig. 4a). 
To further validate these results, we quantified HLA-A protein in 62 of 
the metastatic samples (Fig. 4b). We found a positive correlation of 
HLA-A protein with HLA-A mRNA (Fig. 4c) and with HLA-B mRNA but not 
HLA-C mRNA (Extended Data Fig. 6b). We also observed lower HLA-A 
mRNA expression in HLA-A-methylated tumors (Fig. 4d, left) and a near 
significant positive trend between HLA-A protein expression and HLA-A 
DNA methylation (Fig. 4d, right). DNA copy number analysis also dem-
onstrated 23 samples from eight participants with focal deletions in this 
region, but in only 13 samples from three participants were these focal 
deletions near an HLA gene (<40 kb; Fig. 4e). From these 13 samples, 
only three tumors (two participants) had RNAseq data, and these focal 
deletions appeared nominally mutually exclusive from samples with 
HLA-A methylation (Fig. 4f). Following the same threshold applied to 
the HLA-A gene, three tumors from three different individuals had a 
focal deletion in the B2M gene (Fig. 4f). Other HLA class I-associated 
DNA methylation events appeared to be rare, except for TAPBP.

Consistent with a functional role for these events, metastatic 
samples with HLA-A methylation or focal deletion had reduced mRNA of 
HLA genes and multiple immune signatures compared to their matched 
primaries (Fig. 4f). The HLA-A-, HLA-B- and HLA-C-altered samples 
also demonstrated a higher degree of HLA-A-predicted neoantigens  
(Fig. 4f). We also analyzed the relationship between HLA-A mRNA 
expression in primary tumors and paired metastases relative to 
immune signatures in the RAP dataset of 12 primary tumor–metastasis 
pairs and identified the same relationship of low HLA-A mRNA and low/
lower immune cell gene expression features, which again was the most 
frequent in basal-like/TNBC (Extended Data Fig. 7a–d).

Interestingly, we noted a strong inverse association of 
HLA-A-predicted neoantigens with HLA-A gene expression, as opposed 
to HLA-B or HLA-C, in basal-like samples from both primary tumors and 
metastases (Extended Data Fig. 6c). In basal-like primary and meta-
static tumors, those tumors with HLA-A alterations had significantly 
higher numbers of MHC class I-associated neoantigens, which was not 

Fig. 4 | HLA-A dysregulation and impact on immune-related features in 
metastatic tumors. a, Hypermethylated CpG sites in HLA-A (8 CpG sites), HLA-B 
(14 CpG sites) and HLA-C (12 CpG sites) of 133 primary and metastatic tumors; 
TSS, transcription start site. b, Representative images of 37 metastatic samples 
showing HLA-A immunofluorescence staining for two different levels of HLA-A 
protein expression (top third and bottom third). HLA-A protein expression 
values were divided into tertiles on the basis of low (lower third), intermediate 
(middle third) or high intensity (upper third). c, Correlation analysis of HLA-A 
protein expression and HLA-A gene expression values (n = 37 metastases). The 
correlation was measured using the Spearman correlation coefficient. d, Box 
plots of HLA-A mRNA gene expression levels in metastases (left; n = 75 metastatic 
tumors) and HLA-A protein expression (right; n = 34 metastatic tumors) 
according to DNA methylation status when data were available. e, HLA-A, HLA-B, 
HLA-C and HLA-DRB5 focal deletions in the HLA region of 49 individuals. f, Heat 
map representation of the difference in HLA-A, HLA-B, HLA-C, B2M and TAPBP 
gene expression values and GP2-immune-metagene and hallmark interferon-γ 
(IFNγ) response gene signature scores, calculated between paired primary 
(n = 36) and metastatic (n = 60) tumors. Normal-like paired and unpaired tumors 
were removed from this analysis (paired normal and unpaired group from the 
‘Pairs-PAM50-Prim’ column of Supplementary Table 2). Gene and signature 
scores are ordered according to HLA-A gene expression changes. For the 60 
metastases, the association is shown with HLA-A, HLA-B, HLA-C, B2M and TAPBP 
gene methylation/DNA focal deletion status, PAM50 and site of metastasis; NK, 

natural killer. g, Left, MHC class I-associated neoantigen levels in MHC class 
I-altered tumors (HLA-A, HLA-B, HLA-C, B2M and TAPBP hypermethylation or focal 
deletion) versus non-altered tumors (Others) when data were available (basal-like 
tumors: n = 25, 5 primaries and 20 metastases; luminal/HER2E tumors: n = 39, 9 
primaries and 30 metastases). Right, TMB in MHC class I-altered tumors versus in 
other tumors when data were available (basal-like tumors: n = 35, 11 primaries and 
24 metastases; luminal/HER2E tumors: n = 52, 15 primaries and 37 metastases); 
NS, not significant. h, HLA-A, HLA-B, HLA-C and B2M gene expression values are 
shown in HLA-A-altered versus other tumors when data were available (n = 37, 13 
primaries and 24 metastases). i, MHC class I metagene signature scores according 
to lines of therapies in metastatic samples (N = 77). j, MHC class I metagene 
signature score differences between primary and metastatic tumors according 
to molecular subtype in AURORA (n = 46) and RAP (n = 57) cohorts. Normal-like 
tumors were removed from the analysis. All box and whisker plots of the figure 
display the median value on each bar, showing the lower and upper quartile 
range of the data (Q1 to Q3) and data outliers. The whiskers represent the lines 
from the minimum value to Q1 and Q3 to the maximum value. All comparisons 
between more than two groups were performed by ANOVA with a post hoc Tukey 
test (one sided), and P values are shown in red (i and j). Comparison between only 
two groups was performed by unpaired Mann–Whitney test (two sided), and 
significant P values are highlighted in red (d, g and h). LumA, Luminal A; LumB, 
Luminal B; LN, lymph node; Unme, unmethylated; HyperMe, hypermethylated.
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driven by a higher tumor mutational burden (TMB; Fig. 4g); in particu-
lar, participant AER2 showed more than 50 times higher neoantigen 
load in primary tumors and liver metastases than observed in other 

participants. In this participant, HLA-A was methylated in primary and 
metastatic tumors, and HLA-A mRNA and immune signatures were even 
lower in the liver metastasis. By contrast, luminals and HER2E primary 

1.0

CpG island

Non-detection
probe masking

β value

0 0.5

lo
g 2 C

N
V 

ra
tio

3.0 × 1072.9 × 107 3.1 × 107 3.2 × 107 3.3 × 107

Position (bp)

HLA-A HLA-C HLA-B HLA-DRB5

Focal deletion in HLA region

b

–1

0

1

2

–2

–3

a HLA-C (NM_002117)
TSS

HLA-B (NM_005514)
TSSTSS

HLA-A (NM_002116)

CpG sites (n = 12)CpG sites (n = 14)CpGs sites (n = 8)Metastatic
tumor

Hyper-
methylated

Metastatic
tumor

Hyper-
methylated

Metastatic
tumor

Hyper-
methylated

13
1 t

um
or

s

13
1 t

um
or

s

13
1 t

um
or

s

H
LA

-A
 n

eo
an

tig
en

s

10
30
50

0
4
8

AF
R5

.T
TM

1
AF

E5
.T

TM
9

AF
E4

.T
TM

6
AF

SP
.T

TM
1

AE
5H

.T
TM

1
AF

E7
.T

TM
1

AG
12

.T
TM

1
AF

E9
.T

TM
1

AF
KB

.T
TM

1
AG

0J
.T

TM
1

AF
E5

.T
TM

4
AF

EC
.T

TM
3

AF
U

M
.T

TM
1

AE
R8

.T
TM

2
AD

9G
.T

TM
2

AF
E7

.T
TM

3
AE

R6
.T

TM
9

AE
6Y

.T
TM

1
AE

R2
.T

TM
1

AF
EA

.T
TM

2
AE

5G
.T

TM
1

AG
0M

.T
TM

1
AF

95
.T

TM
1

AF
EA

.T
TM

6
AF

E7
.T

TM
2

AE
R6

.T
TM

2
AF

E4
.T

TM
5

AG
0N

.T
TM

1
AF

U
L.

TT
M

1
AF

9A
.T

TM
1

AF
SO

.T
TM

1
AF

EA
.T

TM
4

AF
EC

.T
TM

4
AE

RX
.T

TM
1

AE
PZ

.T
TM

1
AF

EA
.T

TM
1

AE
R6

.T
TM

6
AF

E4
.T

TM
1

AF
EC

.T
TM

6
AF

E6
.T

TM
2

AE
R6

.T
TM

5
AF

SL
.T

TM
1

AF
E6

.T
TM

1
AD

9G
.T

TM
3

AF
U

I.T
TM

1
AF

R3
.T

TM
1

AE
R6

.T
TM

7
AE

R7
.T

TM
4

AE
R6

.T
TM

1
AE

R6
.T

TM
3

AE
R6

.T
TM

10
AF

EA
.T

TM
3

AF
E9

.T
TM

3
AF

U
N

.T
TM

1
AF

E9
.T

TM
4

AE
R2

.T
TM

3
AF

98
.T

TM
1

AF
94

.T
TM

1
AF

E9
.T

TM
2

AF
KF

.T
TM

1

HLA-A

Hallmark IFNγ response signature

B2M

GP2-immune-metagene signature

Site metastasis
PAM50
HLA-A DNA HyperMe/DNA focal deletion
HLA-B DNA HyperMe/DNA focal deletion
HLA-C DNA HyperMe/DNA focal deletion
B2M DNA HyperMe/DNA focal deletion
TAPBP DNA HyperMe/DNA focal deletion

HLA-B
HLA-C

TAPBP

Site of metastasis
Brain Lung

PAM50
Basal LumA

DNA HyperMe DNA focal deletion
Yes 

Liver
LN

Others Claudin
HER2E

LumB
Normal-like

Yes
No
NA

HLA-A neoantigens
NA

Di¡erence: metastasis – primary
420–2–4

Lower expression
in metastasis

Higher expression
in metastasis

j

To
ta

l M
H

C
 c

la
ss

 I 
ne

oa
nt

ig
en

s

d

f
Basals

Luminal/HER2E

0

50

100

150

To
ta

l M
H

C
 c

la
ss

 I 
ne

oa
nt

ig
en

s

MHC
class I
altered

Others MHC
class I
altered

Others

MHC
class I
altered

Others

g

i

h

AURORA 36 individuals - 60 metastases

0

10

20

30 P = 0.002

NS

0

50

100

150

TM
B

NS

MHC
class I
altered

Others

0

50

100

TM
B

NS

NK cell activated signature-CIBERSORT

H
LA

-A
 g

en
e 

ex
pr

es
si

on
H

LA
-C

 g
en

e 
ex

pr
es

si
on

12.5

15.0

17.5

20.0

22.5

HLA-A
altered

Others

P = 0.004
P = 0.017

12.5

15.0

17.5

20.0

22.5

HLA-A
altered

Others

H
LA

-B
 g

en
e 

ex
pr

es
si

on

P = 0.01

12.5

15.0

17.5

20.0

22.5

HLA-A
altered

Others

P = 0.01

12.5

15.0

17.5

20.0

22.5

HLA-A
altered

Others

B2
M

 g
en

e 
ex

pr
es

si
on

AURORA paired data
di¡erence: met – prim

RAP paired data
di¡erence: met – prim

–20

–10

0

10

Bas
al

HER2E
Lu

mA
Lu

mB

M
H

C
 c

la
ss

 I 
m

et
ag

en
e

P = 0.001

P (ANOVA) = 0.002–20

–10

0

10

Bas
al

HER2E
Lu

mA
Lu

mB

M
H

C
 c

la
ss

 I 
m

et
ag

en
e

P = 0.02

P (ANOVA) = 0.012

Low HLA-A 
protein expression

DAPI

50 µm

High HLA-A 
protein expression

50 µm

HLA-A
Pan-CK

HLA-A immunofluorescence 

0

200

400

600

800

H
LA

-A
 p

ro
te

in
 e

xp
re

ss
io

n

Unme Hyperme

P = 0.065

PAM50
Basal HER2E LumA LumB Claudin-low

Unme Hyperme

–4

–3

–2

–1

0

1

2

3

H
LA

-A
 g

en
e 

ex
pr

es
si

on

P = 0.0002

c

–3

–2

–1

0

1

250 500 750 1,000

HLA-A protein expression

H
LA

-A
 g

en
e 

ex
pr

es
si

on

ρ = 0.6 
P = 0.0001

e

100

110

130

0–1 2–4 5 or more

Lines of metastatic therapy

M
H

C
 c

la
ss

 I 
m

et
ag

en
e

Basal
HER2E
LumA
LumB
Normal

P = 0.046

120

Claudin-low

P (ANOVA) = 0.047

PAM50

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-022-00491-x

Mammary gland lobule development
Mammary gland alveolus development
Trachea development
Negative regulation of ubiquitin−protein transferase activity
DNA damage response, signal transduction by p53 class mediator
Flavonoid metabolic process
Pyrimidine-containing compound transmembrane transport
Mammary gland epithelial cell di�erentiation
Lateral mesoderm development
Cellular response to lithium ion
α-Linolenic acid metabolic process
Adherens junction assembly
Xenobiotic glucuronidation
Formation of translation preinitiation complex
Regulation of phosphatidylinositol 3-kinase activity
DNA-dependent DNA replication maintenance of fidelity
Digestive tract morphogenesis
Mesenchymal cell proliferation
Branching involved in blood vessel morphogenesis
Embryonic digestive tract development
Regulation of mesenchymal cell proliferation
Positive regulation of mesenchymal cell proliferation
Embryonic digestive tract morphogenesis
Nephron epithelium development
Mesonephros development
Renal tubule development
Mesonephric tubule development
Mesonephric epithelium development
Ureteric bud development
Metanephros development
Pancreas development
Artery morphogenesis
Cell di�erentiation involved in kidney development
Morphogenesis of a branching epithelium
Digestive system development
Kidney epithelium development
Digestive tract development
Artery development
Heart morphogenesis
Protein modification by small protein conjugation or removal
Mesenchymal cell di�erentiation
Negative regulation of DNA-binding transcription factor activity
Urogenital system development
Renal system development
Mesenchyme development
External encapsulating structure organization
Extracellular structure organization
Extracellular matrix organization
Anatomical structure homeostasis
Positive regulation of cell adhesion

2 4 6 8

Number of genes

CARD11
FOXC2
FOXF1
HES1
JAM3
MUC4
PIK3R6

SHH
SMAD7

SPOCK2
UNC13D

Genes involved in 
cell adhesion

Gene ontology termsb

a

Basal

Claudin

HER2E

LumA

LumB

Normal

Primary

Metastasis

m
RN

A 
JA

M
3 

ex
pr

es
si

on

–1

0

1

2

P = 1.3 × 10–6 P = 0.036

m
RN

A 
FO

XF
1 e

xp
re

ss
io

n

Methylated Hypomethylated Methylated Hypomethylated

–2

0

2

JAM3 FOXF1

DNA methylation at distal ESR1 binding site

Gene expression

0

0.25

0.50

0.75

1.00

Primary Metastasis

D
N

A 
m

et
hy

la
tio

n 
(c

g1
26

97
83

3)

D
N

A 
m

et
hy

la
tio

n 
(c

g0
60

00
55

6)

0

0.25

0.50

0.75

1.00

Primary Metastasis

JAM3
P = 0.0077 P = 0.011

FOXF1

Distal ESR1 binding site Distal ESR1 binding site

0

5

10

15

20

0 10 20 30

ESR1

FOXA1

TFAP2A

TFAP2C

Other

Number of overlapping hypomethylated probes

O
dd

s 
ra

tio

H2AZ

PR

EP300

NR2F2PR

MYC
HIF1A

HIF1A

E2F1

INTS11

TET2

H2AZ

PR PR

11,348 ChiP–seq data

d

c

TCGA BC
DNA methylation at distal ESR1 binding site

e

TCGA breast cancer
Gene expression

Norm
al 

breas
t
Bas

al

HER2E
Lu

mA
Lu

mB

Norm
al-

lik
e

Norm
al 

breas
t
Bas

al

HER2E
Lu

mA
Lu

mB

Norm
al-

lik
e

0

0.25

0.50

0.75

1.00

D
N

A 
m

et
hy

la
tio

n 
(c

g0
60

00
55

6)

0

0.25

0.50

0.75

1.00

D
N

A 
m

et
hy

la
tio

n 
(c

g1
26

97
83

3)

FOXF1JAM3

f

2

4

6

8

m
RN

A 
FO

XF
1 e

xp
re

ss
io

n

P = 2.1 × 10–10

Methyla
ted

Hyp
omethyla

ted

5

7

9

11

m
RN

A 
JA

M
3 

ex
pr

es
si

on

Methyla
ted

Hyp
omethyla

ted

P = 4.1 × 10–15

FOXF1JAM3

Distal ESR1 binding site Distal ESR1 binding site

Dots sizes are proportional 
to the number of genes

–log10 (P value)

0

2

4

6
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(Fisher’s exact test); HR, hormone receptor. b, GO analysis of putative target 
genes for the hypomethylated ESR1 or FOXA1 distal binding sites. Shown are the 
top 50 GO terms based on the P values from the Fisher’s exact test. Dot sizes are 
proportional to the number of genes. Red text highlights cell adhesion GO terms 
and genes of interest. c, Analysis of putative enhancer target genes involved in 
the regulation of cell adhesion in ER+ tumors. A comparison of distal element 
DNA methylation between primary tumors (n = 15 tumors) and metastases 

(n = 19 tumors) in ER+ tumors is shown. d, Gene expression between methylated 
(β value of ≥0.4) and unmethylated (β value of <0.4) ER+ tumors. The P values of 
c and d were calculated using Welch’s two-sample t-test (two sided). e,f, Analysis 
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represent the lines from the minimum value to Q1 and Q3 to the maximum value. 
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and metastatic tumors demonstrated higher TMB and MHC class I 
neoantigens in cases with MHC class I genetic or epigenetic alterations 
than in all other cases (Fig. 4g). Moreover, a general decrease in HLA-A, 
HLA-B, HLA-C and B2M gene expression was observed in basal-like 
samples with HLA-A genetic or epigenetic alterations (Fig. 4h). Taken 
together, these results point toward a high selective pressure on MHC 

class I-restricted neoantigens, CD8+ T cell-mediated immunity and MHC 
class I gene expression in basal-like BC. Of note, lower expression of 
MHC class I genes was observed in metastatic samples procured after 
increased lines of metastatic therapy (Fig. 4i), regardless of subtype.

We next tested the association of primary/metastasis-specific 
downregulation of an MHC class I metagene signature composed of 

PRDM1T525A

354
43

26.74%

LiverPrimary

Clone 2

Clone 1

Clone 3

Clone 5 Clone 4

Clone 6 Clone 7Clone 9

Clone 8

All samples

Time since primary diagnosis (months)
0 4 8 12 16 20 24 28 32

Primary
diagnosis

57 years-old

Liver metastasis
diagnosis

TAC
CBDCA/

Gem RT

Liver biopsy
HR+/HER2–

Letrole
+/– everolimus Cape

Fulvestrant
Palbociclib

CBDCA

Breast P1 (Luminal A) Left liver M2 (HER2E)

Progression
disease 

Mastectomy and
lymphadenectomy

Grade III IDC
stage IIIB (cT4N1)
HR+/HER2–

Stage IIIC (ypT2N3)

a AER8

Time since primary diagnosis (months)
0 4 8 12 16 20 24 28 32

50 years-old
Liver, brain, lung

metastasis diagnosis

TAC

Breast P1 (luminal B)

Tamoxifen

Mastectomy Craneotomy

Mixed
response

THP

Brain biopsy
HR–/HER2+

Grade III IDC
stage IIA (pT2N0)

HR+/HER2–

AFR3

e

CLIP11171ns

BRAFI77V

Germline

C
lo

ne
 c

el
lu

la
rit

y

1.0

0.8

0.6

0.4

0.2

0 P1
Breast

M1 
Right liver

M2
Left liver

N

C
lo

ne
 c

el
lu

la
rit

y

1.0

0.8

0.6

0.4

0.2

0 P1
Breast

N M1
Brain

Right liver M1 (No RNA available)

Chemotherapy
Hormone therapy
Radiotherapy
Death

b

c

f

g

ERBB2E668Q

PDE4DIP277ns

FOXA1123-133del

ATP1A1R517H

TBX3478fs

ERBB217x Gain

Germline

Clone 1

Clone 2

Clone 3

Clone 4

Clone 5

Clone 7

Clone 8

Clone 6

Primary
Brain M1

All samples

Time since primary diagnosis (months)
0 6 12 18 24 30 36 42 48

65 years-old
Bone, lung, pleura, LN
 metastasis diagnosis

TC Cape

Breast P1 (HER2E) Liver M6 (luminal A)

Trastuzumab

Letrozole Exe

Brain
progression

WBRT

i

Lung biopsy
HR+/HER2–

AFE4

Right lung M1 (no RNA available)

Pericardium M5 (luminal B)
Left lung M1 (luminal B)

Mediastrum M2 (no RNA available)
Pancreas M4 (no RNA available)

j

k

13

148

71

CUX1887ns

NCOR11977fs

EXT1F435I

DDX5L239Q

DDX5T530S

ATRXD818E

MED12244nsAll Samples

Metastases
Liver-M6

Germline

Clone 1

Clone 2

Clone 3

Clone 5
Clone 4

Clone 8

Clone 10

Clone 9
Clone 13

Clone 12

Clone 11
Clone 7

Clone 6

Left lung
PancreasRight lung Pericardium

Liver
P1N M1 M3 M5 M2 M4 M6

Breast Mediastinum

C
lo

ne
 c

el
lu

la
rit

y

1.0

0.8

0.6

0.4

0.2

0

d

h

l

P1 M
1

M
5

M
6

ESR1

PGR

ERBB2

HLA-A

Proliferation signature

IgG cluster signature

GP2-immune-metagene signature

Hallmark IFNγ response

Site metastasis
PAM50
HLA-A DNA HyperMe

Tumor type

P1 M
1

ESR1

PGR

ERBB2

HLA-A

Proliferation signature

IgG cluster signature

GP2-immune-metagene signature

Hallmark IFNγ response

M1

M3

M5

P1 M
2

ESR1
PGR
ERBB2
HLA-A
Proliferation signature
IgG cluster signature
GP2-immune-metagene signature
Hallmark IFNγ response

Site metastasis
PAM50
HLA-A DNA HyperMe

Tumor type

Site metastasis
PAM50
HLA-A DNA HyperMe

Tumor type

Tumor type
Site metastasis
PAM50
HLA-A DNA HyperMe

Normal
tissue
(n = 31)

9,
37

6 
pr

ob
es

P1 M
2

M
1

7,
72

2 
pr

ob
es

Normal
tissue
(n = 31)

Site metastasis
PAM50
HLA-A DNA HyperMe

Tumor type

P1 M
1

10
,2

48
 p

ro
be

s

Normal
tissue
(n = 31)

M
1

M
4

M
6

M
3

M
5

M
2

Site metastasis
PAM50
HLA-A DNA HyperMe

Tumor type

m

n o

M4

M1

M2
M2

PcG target
(72.0%)

Purity

PcG target
(70.4%)

Purity

PcG target
(71.4%)

Purity

Polycomb target 
in ES cells

No
Yes

Purity

Purity
Purity

Copy loss of ERBB2 

20.90%

8.88%

10.95%

1.26%

14.54%
21.77%

8.44%

13.25%

<0.5%

13.58%

6.31% 5.68%

17.71%

15.30%

6.27%

8.15%

13.61%

23.95%

20.16%

2.78%
7.04%

5.26%

2.70%

4.38%

6.44%
4.01%

2.62%

3.38%

3.67%

TP53R243WTP53S241F

Progression
disease 

Primary
diagnosis

Primary
diagnosis

Grade II IDC
stage I (pT1N0)

HR+/HER2+

(versus 13.6% of 
all CpGs in 
the array)

NCOR12117ns

Stable
disease 

Progression
disease 

394

263 211

197

36

56 37

76

144

121

63

60
ERG213ns

138 45

Liver
progression

58

127

173
OLIG2A216T

HNF1AK280R

31
83

56 586

61

202

126

54

Brain M1 (HER2E)

Polycomb target 
in ES cells

No
Yes

(versus 13.6% of 
all CpGs in 
the array)

Polycomb target 
in ES cells

No
Yes

(versus 13.6% of 
all CpGs in 
the array)

Brain
Liver
Lung

Pericardium
Mediastrium
NA (primary)

Site of metastasis
Pancreas HER2E

LumA
LumB

Tumor type
Primary
Metastasis

PAM50
Normal-like
No RNA

DNA HyperMe
Yes
No
NA

β 
va

lu
e

0.5
0

1.0

Tumor purity
(DNA sequencing
based)

HighLow

Sc
or

e

–4
–2

2
0

4

Fig. 6 | Multiomics participant characterization of individual AURORA cases. 
a–o, Timeline of participant clinical history (a, f and k), clonal structure (b, g and 
l), clonal evolution (c, h and m) and transcriptome (d, i and n) and methylome 
description (e, j and o) of participants AER8 (a, b, c, d and e), AFR3 (f, g, h, i and 
j) and AFE4 (k, l, m, n and o). Transcriptome data reflect gene expression values, 
and gene expression signatures were calculated using normalized RNAseq data; 
LumA, Luminal A; LumB, Luminal B; P, primary; M, metastasis; N, AQ21normal; 

LN, lymph node; R. Lung, right lung; L. Lung, left lung; R. Liver, right liver; L. Liver, 
left liver; M, metastasis; ES, embryonic stem. PGR, progesterone; ESR1, estrogen 
receptor; TAC, docetaxel (Taxotere), doxorubicin hydrochloride (Adriamycin), 
and cyclophosphamide; CBDCA, carboplatin; Gem, gemcitabine; RT, radiation 
therapy; Cape, capecitabine; THP, docetaxel, trastuzumab, and pertuzumab; 
WBRT, whole brain radiation therapy.
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a composite expression of HLA-A, HLA-B, HLA-C, B2M, TAP1, TAP2 and 
NLRC5 between metastasis and matched primary tumor according to 
intrinsic subtype. Across the AURORA and RAP datasets, only basal-like 
BCs demonstrated consistent and significant downregulation of the 
MHC class I metagene signature in metastatic disease (Fig. 4j). This 
downregulation was observed for HLA-A, HLA-B and HLA-C genes only in 
basal-like tumors (Extended Data Fig. 6d,e). Changes in gene expression 
for HLA-A, HLA-B and HLA-C genes were consistently altered within a 
given metastatic sample, supporting a common regulation of all three 
genes (Extended Data Fig. 6d,e).

To determine how antigen presentation via MHC class I expression 
and associated neoantigens may impact the tumor immune microen-
vironment, we performed CIBERSORTx35 deconvolution on RNAseq 
data in ‘relative mode’. We constructed a correlation matrix that was 
further analyzed by unsupervised hierarchical clustering. We observed 
four associated clusters of features, two of which reflected positive 
feature correlation patterns and two of which reflected negative fea-
ture correlation patterns (Extended Data Fig. 6f). The first positive 
cluster reflected associations of MHC class I neoantigens (specifi-
cally those with predicted binding affinity to HLA-A and HLA-C) with 
tumor-associated macrophages, regulatory T cells and γδ T cells. The 
second positive cluster showed enrichment of cytotoxic CD8+ T cells, 
memory-activated CD4+ T cells, B cells, dendritic cells (DCs) and inflam-
matory macrophages in high-MHC class I-expressing tumors, consist-
ent with a more inflamed phenotype and intact antigen processing and 
presentation and adaptive immunity. Consistent with our prior finding 
that BCs with high MHC class I neoantigens appear to downregulate 
MHC class I gene expression, the first negative association cluster 
showed that tumors with more abundant neoantigens often were 
associated with poor DC cell activation hallmarks (negative cluster 1) 
and low expression of MHC class I genes (negative cluster 2).

Given the finding of HLA-A loss in the metastatic setting, we also 
sought to determine whether this might occur in early-stage dis-
ease and how frequently by evaluating TCGA-BRCA data that con-
tain RNAseq, DNA-sequencing and DNA methylation data36. Of 761 
TCGA-BRCA tumors tested, 68 showed methylation of HLA-A, and 8 
showed methylation of HLA-B (Extended Data Fig. 8a–c). Primary tumor 
HLA-A methylation was associated with lower HLA-A mRNA levels and 
lower expression of multiple adaptive immunity signatures (Extended 
Data Fig. 8d–f). Importantly, tumors with HLA-A methylation showed 
worse survival outcome, even in multivariate analyses adjusting for 
stage and PAM50 subtype (Extended Data Fig. 8g,h).

Epigenetic suppression of cell adhesion in metastases
We conducted a systematic analysis of DNA methylation changes 
associated with metastasis to uncover additional genes affected by 
an epigenetic mechanism. Cellular composition has a profound impact 
on DNA methylation profiles; thus, different metastatic sites could 
produce false-positive results through contaminating stromal DNA 
methylation signals. We circumvented this metastatic site contamina-
tion problem by screening for loss of methylation in metastatic tumors 
at cis-regulatory elements that are consistently methylated in normal 
tissues representing the metastatic target tissues. We selected 19,607 
CpG sites in distal enhancer-like elements defined by the ENCODE pro-
ject37 that are constitutively methylated in eight normal tissue types. 
Statistical testing analyses comparing primary tumors to metastases 
identified 123 CpG sites that were significantly hypomethylated in 
metastatic tumors compared to their matched primaries. Using 11,348 
chromatin immunoprecipitation with sequencing (ChIP–seq) datasets, 
we found a significant overrepresentation of 47 DNA binding sites for 
21 proteins at the 123 hypomethylated CpG sites (Fig. 5a). Proteins 
involved in estrogen signaling dominated binding at these hypometh-
ylated CpGs, including those encoded by ESR1, FOXA1, TFAP2A and 
TFAP2C, consistent with other reports of estrogen signaling in BC 
progression38,39. We further investigated the distal elements bound 

by ESR1 and FOXA1 by performing Gene Ontology (GO) enrichment 
analysis of putative target genes regulated by these elements (Meth-
ods and Fig. 5b). We found that genes involved in the regulation of cell 
adhesion are frequently represented among the target genes (Fig. 5b). 
However, surprisingly, we found that distal element hypomethylation 
is significantly associated with reduced expression of these associated 
genes, suggestive of negative regulation of these genes by estrogen 
signaling when analyzing individuals with ER+ BC only (Fig. 5c,d) or even 
when using all individuals (Extended Data Fig. 9a–d). We confirmed the 
significant association between distal element hypomethylation and 
reduced expression of JAM3 and FOXF1 in TCGA (Fig. 5e,f).

We conducted a similar screen for gain of methylation at promot-
ers by selecting CpG sites that are constitutively unmethylated in 
normal tissues representing the metastatic target tissues. We identi-
fied metastasis-associated promoter DNA hypermethylation of three 
genes (JAM3, YBX3 and SYNDG1), one of which was also identified in the 
distal element DNA hypomethylation analysis (Extended Data Fig. 10, 
left and middle). Gene expression of all three genes was significantly 
lower in metastatic tumors than in the matched primaries, and this 
observation was more pronounced in HER2E or luminal subtypes 
(Extended Data Fig. 10c,f,i).

Clonal evolution and subtype switching
Many publications have studied DNA-based clonal evolution in lon-
gitudinal samples and in response to therapeutic selection40,41. We 
focused here on three cases that showed gene expression-based sub-
type switching to address the question of whether this change in expres-
sion phenotype was accompanied by DNA clonality changes (Fig. 6a–o). 
Participant AER8 was diagnosed with an ER+/progesterone receptor 
(PR)+/HER2– LumA subtype primary tumor and received neoadjuvant 
chemotherapy and adjuvant endocrine therapy plus everolimus; par-
ticipant AER8 was diagnosed with liver metastases after ~20 months of 
treatment, received an additional three lines of therapy and succumbed 
to disease, at which time biopsies of several metastatic lesions were 
obtained (Fig. 6a). The two assayed liver metastases were of the same 
clonal lineage (orange), which was distinct from the dominant clonal 
lineage of the primary (purple; Fig. 6b,c), a finding also supported by 
the DNA hypermethylation profiles (Fig. 6e). Metastasis M2 was assayed 
by RNAseq and showed a subtype switch to HER2E (yet remained clini-
cally HER2–), with an increase in proliferation signature and a decrease 
in HLA-A mRNA levels and immune cell features (Fig. 6d). Acquisition 
of the HER2E subtype in the absence of gain of HER2 amplification in 
metastatic samples has been reported3,22,42.

A second example of subtype switching was participant AFR3, who 
was diagnosed with an ER+/PR+/HER2– LumA BC. Participant AFR3 was 
treated with chemotherapy then endocrine therapy and progressed 
with multiple metastases, of which the brain metastasis was surgically 
removed (Fig. 6f). The brain specimen showed a dramatic change to ER–/
PR–/HER2+, and gene expression analysis confirmed an increase of HER2 
expression and a subtype switch to HER2E (Fig. 6f), with a concomitant 
DNA clonality change that included the acquisition of copy amplifica-
tion of the HER2 region and an ERBB2/HER2 E668Q activating mutation 
(Fig. 6g,h). This DNA clonal change was also reflected in the DNA hyper-
methylation landscape (Fig. 6j) and was associated with a downregula-
tion of ESR1 and PGR and upregulation of ERBB2 mRNA (Fig. 6i).

In contrast to participant AFR3 whose BC switched to the HER2E 
subtype, likely due to an acquired HER2 amplification, participant 
AFE4 showed a reverse trend. Namely, this participant presented with 
an ER+/PR+/HER2+ BC (HER2E expression subtype), where it was noted 
that the clinical HER2 immunohistochemistry (IHC) result was 2+ and 
fluorescence in situ hybridization (FISH) inconclusive but was HERmark 
assay positive. After 30 months of trastuzumab, tumor progression was 
documented, a lung biopsy was obtained, and the clinical receptor sta-
tus was remeasured, indicating an ER+/HER2– status. Additional treat-
ments were given; however, the tumor progressed, and the participant 
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died 18 months later. At autopsy, multiple metastatic tumor specimens 
were obtained (Fig. 6k). Interestingly, the three metastatic specimens 
assayed by RNAseq showed subtype switches to LumA or LumB, DNA 
clonality changes and loss of HER2 amplification (Fig. 6l,m), while 
HER2 mRNA levels were slightly decreased (Fig. 6n). DNA methylation 
features largely agreed with the DNA clonal evolution except for right 
lung metastasis (M1) that presented with the lowest DNA tumor purity 
score (Fig. 6o). Interestingly, liver metastasis (M6) was the most clon-
ally distinct metastasis (as it is shown by clonal evolution history and 
DNA methylation), showing a subtype switch to LumA and the lowest 
levels of HLA-A expression and immune-related signatures compared 
to the other metastases.

Discussion
Established metastatic tumors are challenging to treat, and their 
biology is complex. Overall, when primary tumors are compared to 
their matched metastases, the dominant genomic patterns seen in 
the primary tumors tend to be maintained in the metastases; however, 
significant differences have been identified that may contribute to the 
poor prognosis associated with MBC. In performing multiplatform 
analyses of primary tumors versus metastases, we discovered several 
patterns that may explain some metastatic tumor behaviors, including 
events derived from epigenetic, genomic and transcriptomic evolution.

A key epigenetic mechanism identified here was DNA methylation 
of HLA-A and HLA-A small focal deletions, typically in basal-like/TNBC 
metastatic disease, leading to lower expression of HLA-A and associated 
lowered expression of immune cell features. Alterations in HLA-A have 
also been described using loss of heterozygosity (LOH) analyses in 
BCs43 and by simply lower mRNA44. Here, we show a lower expression of 
HLA-A in those TCGA primary cancers with DNA methylation and, when 
observed, was linked to lower immune cell features and a worse overall 
survival. These findings provide a molecular explanation for the loss of 
immune cell features in some metastatic tumors, which has potential 
therapeutic implications. One such implication is that ICIs may have lit-
tle effect on these HLA-A-low tumors, as these cannot be recognized by 
CD8+ T cells (noting these HLA-A-methylated tumors tend to have high 
neoantigen burdens). These results also suggest a biomarker-driven 
therapeutic approach wherein HLA-A DNA-methylated tumors (that 
is, the biomarker) could be targeted with DNA demethylating drugs 
in combination with ICIs45.

Changes in the somatic genetics of metastatic breast tumors are 
well documented2,3, and here we extend the changes seen in metastatic 
tumors into the epigenetic landscape. Gene expression subtype dis-
cordance between primary and metastatic tumors has been previously 
described22,46,47, and the AURORA study here identified similar findings. 
Namely, in one of three individuals with BC, we identified a gene expres-
sion tumor subtype switch, which was especially frequent in individu-
als with luminal/ER+ BC. In addition to possible epigenetic changes 
in tumor cells, RNAseq analysis of multiple immune cell signatures 
showed dramatic differences simply according to site of metastasis. 
It is already appreciated that the brain is an immune-privileged site48, 
and our results confirm this finding. There is also growing evidence that 
the liver is similarly immune privileged49, and our results confirm low 
immune cell features in liver metastases. Using this unique resource, 
we found that in 9 of 14 individuals with multiple metastases, liver 
metastases had the lowest immune cell features of any synchronous 
site of metastasis. These comparative metastatic tissue site findings 
have clinical implications because the liver is a commonly biopsied site 
for metastatic evaluation, and our data suggest that liver metastases 
are more likely to have low immune cell features, which may bias assay 
results of immune therapy biomarker positivity.

Interestingly, we discovered through systematic screening for 
metastasis-associated DNA methylation changes mechanisms lead-
ing to downregulation of JAM3 expression in metastatic tumors, 
namely DNA hypomethylation at a distal ESR1 binding site and DNA 

hypermethylation of the gene promoter. Notably, it has been reported 
that JAM2 overexpression (a second JAM family member) in BC cell 
lines blocks invasion and migration50, JAM3 is silenced by DNA hyper-
methylation in colorectal cancers, and JAM3 suppression promotes 
migration51. In addition, a causal interaction between DNA methylation 
and ER-mediated repression of gene expression has been previously 
reported52, and our finding that multiple genes regulating cell adhe-
sion appearing to be negatively regulated by estrogen signaling may 
have functional consequences for progression to metastasis. This is 
consistent with prior reports of estrogen-mediated downregulation 
of E-cadherin in BC cells53.

Finally, our three examples of clonal evolution highlight DNA clon-
ality shifts coincident with gene expression-based subtype changes. In 
participant AER8, the clonal shift and altered expression subtype did not 
include any new actionable mutations, which may represent the most 
common finding with respect to changes in DNA-based actionable muta-
tions in the metastatic setting54. In participant AFR3, an actionable variant 
was identified (that is, gain of HER2), and trastuzumab therapy was given, 
although the tumor progressed. Participant AFE4 highlights yet another 
challenge of precision medicine wherein an actionable DNA-based feature 
is identified and targeted (that is, HER2 amplification), yet the tumor 
eventually evades the treatment by deleting the therapeutic target. Each 
of these participants illustrates a third clinical impact of this study, which 
is if medically possible, biopsy and characterize the metastatic disease 
as it has likely changed relative to the primary tumor.

There are limitations to this study. The first challenge was that 
the sample size was likely underpowered to find somatic mutation 
frequency differences. The second challenge was the integration of 
data from FF specimens with data from FFPE specimens. The third 
challenge was that participants received multiple adjuvant and/or 
metastatic treatments, and we were not able to evaluate the treat-
ment effects (noting each participant had an average of three lines of 
therapy). Nonetheless, we identified many multiplatform-supported 
findings concerning tumor clonal evolution and immune evasion that 
are common in MBCs. This multiplatform genomic data resource of 
metastatic disease presented here is highly complementary to the 
TCGA resource of primary disease36,55,56 and has already begun to illu-
minate the molecular landscape of MBC.

Methods
Clinical summary
All research involving human tumor tissues was reviewed and approved 
by the appropriate Institutional Review Board of Research at Baylor 
College of Medicine, Dana Farber Cancer Institute, Duke University, 
Georgetown University Medical Center, Indiana University, Mayo Clinic, 
Memorial Sloan Kettering Cancer Center, University of Pittsburgh and 
UNC at Chapel Hill, and the studies were performed in accordance 
with recognized ethical guidelines. We obtained a waiver of written 
informed consent for some participants for the use of their biological 
specimens, and in other protocols, we obtained informed consent for 
the research procedures. Samples from a total of 55 female participants 
with MBC were the final dataset of the AURORA US cohort. Of these 55 
participants, 10 (18%) were of African American descent, and 4 (7%) 
were of Hispanic ethnicity. The median age at initial BC diagnosis was 49 
years (range: 25–76). Forty-nine participants (89%) initially presented 
with stage I to stage III BC, of which 19 (38%) received neoadjuvant sys-
temic therapy, and 6 (10%) presented with de novo metastatic disease. 
In the metastatic setting, participants received a median of three lines 
of systemic therapy (range: 0–20). Metastatic samples from a total of 
20 participants were collected at autopsy. Additional clinicopathologic 
features are displayed in Supplementary Table 1.

Pathology review
Pathology quality control (QC) was performed on each tumor speci-
men and normal tissue specimen as an initial QC step. Hematoxylin and 
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eosin-stained sections from each sample were subjected to independent 
pathology review to confirm that the tumor specimen was histologically 
consistent to the reported histology. The percent tumor nuclei, percent 
necrosis and other pathology annotations were also assessed. Tumor 
samples with ≥30% tumor nuclei and normal tissue with 0% tumor nuclei 
were submitted for nucleic acid extraction. All hematoxylin and eosin 
images are also available and part of this data resource.

AURORA sample acquisition and biospecimen processing
RNA and DNA were extracted from frozen tissues using a modifica-
tion of the AllPrep DNA/RNA kit (Qiagen). The flow-through from the 
Qiagen DNA column was processed using a mirVana miRNA isolation 
kit (Ambion). RNA and DNA were extracted from FFPE solid tissues 
using a modification of the AllPrep DNA/RNA FFPE kit (Qiagen). The 
flow-through from the Qiagen DNA column was processed using a mir-
Vana miRNA isolation kit (Ambion). For cases in which whole blood or 
blood derivatives were received, DNA was extracted from blood using 
the QiaAmp DNA blood midi kit (Qiagen). RNA samples were quantified 
by measuring absorbance at 260 nm with a UV spectrophotometer, and 
DNA was quantified by PicoGreen assay. DNA specimens were resolved 
by 1% agarose gel electrophoresis to confirm high-molecular-weight 
fragments. A custom Sequenom single-nucleotide polymorphism 
panel or the AmpFISTR Identifiler (Applied Biosystems) was used to 
verify that tumor DNA and germline DNA representing a case were 
derived from the same participant. RNA was analyzed via the RNA6000 
Nano assay (Agilent) for determination of an RNA integrity number. 
Only cases yielding a minimum of 250 ng of tumor DNA, 500 ng of 
tumor RNA and 250 ng of germline DNA were included in this study. 
A minimum of one QC-qualified tumor sample and one QC-qualified 
normal tissue sample were required for a case to become part of the 
study (n = 55 total cases).

RNAseq, gene expression data values and normalization
Gene expression profiles from primary and metastatic tumors for the 
AURORA dataset were generated by RNAseq using an Illumina HiSeq 
and an rRNA depletion method. Briefly, 300–500 ng of total RNA was 
converted to RNAseq libraries using the TruSeq Stranded Total RNA 
Library Prep kit with Ribo-Zero Gold (Illumina) and sequenced on 
an Illumina HiSeq 2500 using a 2 × 50 base pair (bp) configuration. 
QC-passed reads were aligned to the human reference CGRh38/hg38 
genome using STAR v.2.7.6a. Transcript abundance estimates for each 
sample were performed using Salmon v. 1.4.0, an expectation maximi-
zation algorithm using the University of California Santa Cruz gene 
definitions. Raw read counts for all RNAseq samples were normalized 
to a fixed upper quartile (UQN). The raw reads files are available in 
dbGAP (phs002622.v1.p1).

Gene expression analysis of RNAseq data and batch effect 
adjustments
RNAseq UQN gene counts from 123 primary and metastatic tumors 
comprised of 35 FFPE and 88 FF RNA-sequenced tumor data were log2 
transformed, genes were filtered for those expressed in 70% of samples, 
and zeros were returned to the empty values. To improve the batch 
effect between the two data types (that is, FFPE and FF), we merged 
a second dataset of 101 paired primary and metastatic tumors (UNC 
RAP cohort) comprised of 20 FFPE and 81 FF sequenced tumors. This 
second dataset was partially previously published in 2018 (ref. 23), but 
some new samples were added and sequenced for the present work, 
and many of the published samples were resequenced here using the 
rRNA depletion method (dbGAP phs002429). The RAP101 samples of 
the present work were created with the same RNA extraction, library 
preparation and sequencing protocol as the AURORA samples and 
represent a second dataset of FFPE and FF samples that increases our 
sample size for adjustments of FFPE versus FF effects. The clinical 
information of the RAP101 dataset is found in Supplementary Table 2.

To address this systematic effect, we merged the raw read counts 
for all RNAseq samples of the previously mentioned RAP101 dataset 
with 123 samples of the AURORA study (level 1 data). These counts 
were normalized using DESeq2-normalized counts (median of ratios 
method)57. Briefly, we created a DESeq2Dataset object and generated 
size factors using the estimateSizeFactors() function. Next, to retrieve 
the normalized counts matrix, we used the counts() function and added 
the argument normalized=TRUE. After generating the normalized 
count matrix, genes with an average expression lower than 10 were 
filtered from the dataset. RNAseq-normalized gene counts from the 
224 dataset were log2 transformed (level 2 data). Next, we used the 
removeBatchEffect() function from the limma R package58, including 
both batches in the formula. Last, we subtracted only the 123 samples 
from the AURORA study and used this normalized, log2-transformed 
and batch-corrected dataset for further RNAseq gene expression analy-
sis (level 3 data).

To minimize false-positive results due to the normal tissue con-
tamination generated by normal brain (n = 10), liver (n = 8) or lung 
tissue (n = 7), the most common sites of metastasis in this study, we 
removed those genes whose expression was solely coming from these 
three tissue sites. Specifically, we used statistical testing to determine 
normal brain, liver and lung signatures by comparing each normal 
tissue to normal breast tissue (n = 5; Supplementary Table 3; dbGAP 
accession number for AURORA phs002622.v1.p1 and for RAP and 9830 
phs002429). This normal tissue dataset was also created using the same 
RNA extraction, library preparation and sequencing protocols. From 
normalized, filtered and median-centered counts, we performed linear 
model (LM) regression using lme4 (ref. 59) and lmerTest60 R packages 
given the formula, fit = lm(genes ~ normal site of metastasis/breast 
normal), and P values were adjusted for multiple comparisons using the 
Benjamini–Hochberg approach61,62. We obtained the most significant 
upregulated genes in each normal tissue (FDR < 0.00001) by compar-
ing each normal tissue to normal breast tissue (brain versus breast, 
liver versus breast and lung versus breast); we merged these three lists 
and identified 1,900 genes as the distinctive upregulated genes of our 
‘normal tissue signature’. To build a second signature characteristic 
of breast primary tumors, we did a second LM analysis between the 
46 primary tumors from the AURORA study and the 5 normal breast 
tissue samples from the above-mentioned normal tissue cohort, and 
we obtained 833 significant upregulated genes (FDR < 0.01). Some 
of these genes were also present in the ‘normal tissue signature’, and 
thus we removed these common 449 genes from the ‘normal tissue 
signature’ list, considering these genes not unique to normal tissues 
but also important markers for primary tumors in the AURORA cohort. 
Finally, the remaining 1,451 genes of the ‘normal tissue signature’ (Sup-
plementary Table 3) were removed from the original normalized and 
batch-corrected gene expression data matrix of the 123 AURORA 
cohort samples (referred to as the normalized, log2-transformed, 
batch-corrected and normal-adjusted data or level 4 RNAseq data).

PAM50 subtype classification. To better maintain methods with 
past intrinsic subtyping methods24, for PAM50 subtype classifica-
tion assignments, we normalized the RNAseq data in a different way 
than described immediately above that is based on within-dataset 
row and column standardizations. Briefly, RNAseq-normalized gene 
counts from 123 primary and metastatic tumors comprised of 35 FFPE 
and 88 FF RNA-sequenced tumor data were log2 transformed, genes 
were filtered for those expressed in 70% of samples, and zeros were 
returned to the empty values. To address the FFPE versus FF effects, 
we again used the AURORA and RAP101 datasets as described above 
and made an adjustment for FFPE versus FF. Namely, using only com-
mon genes between both datasets, we merged, row median centered 
and column standardized FFPE and FF groups separately, where each 
gene was a row, and each sample was a column. Next, we subtracted 
only the FFPE and FF normalized batches from the AURORA study 
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and used these values for receiver operating characteristic (ROC) 
curve and Youden cutoff analysis for ER, PR and HER2 status compari-
sons, which provide external validation that the adjustments do not 
adversely affect the gene expression data using tests of correlation 
to the external clinical standards.

For PAM50 subtype classification, we applied a HER2/ER 
subgroup-specific gene-centering method as described in the sup-
plemental methods of Fernandez-Martinez et al.24. For applying this 
subgroup-specific gene-centering method, we need the IHC status 
for all samples assayed by RNAseq. Six percent of primary tumors 
and 39% of metastatic samples did not have HER2 IHC information, 
and 38% of metastatic samples were missing ER status. ‘Profiled Pri-
mary ER/HER2/PR’ columns of Supplementary Table 2 were used for 
this analysis. We again used ROC curve and Youden cutoff values for 
inferring protein clinical status using ESR1 and ERBB2 gene expression 
data from all tumors, and we assigned ER and HER2 clinical status to 
those samples that had missing clinical values using the mRNA sur-
rogates. The ROC curve analysis showed a value of 0.92 for ER status 
by ESR1 mRNA and of 0.87 for HER2 status using ERBB2 mRNA. The 
new RNAseq-inferred ER/PR/HER2 protein status was used for the 
subgroup-specific gene-centering method (inferred ER/PR/HER2 
column of Supplementary Table 2). Finally, the gene expression values 
of the PAM50 genes using the UQN gene counts were then normalized, 
and the PAM50 predictor63 was applied using the provided centroids 
to assign subtype calls using correlation values for all primary tumors 
and metastases (Supplementary Table 2).

Gene expression signatures. For each batch-corrected and adjusted 
for normal tissue gene expression dataset/subset (level 4 RNAseq 
data), we applied a collection of 747 gene expression modules (Sup-
plementary Table 3), representing multiple biological pathways and 
cell types, to all primary and metastatic tumors22,31,64.

Finally, we developed an immune metagene signature named 
‘GP2-immune-metagene’, a signature that we developed to capture 
immune cell features as derived from the AURORA dataset. Briefly, we 
used TCGA gene expression data to calculate all 747 module scores, 
which was then used for hierarchical clustering analysis, and the 
resulting clusters of modules were tested for significance of these 
groups of modules using SigClust65. Fifty-six clusters with a P value 
of <0.001 were identified, and 16 immune-related signatures from 
cluster 51 were grouped as a new ‘immune meta-signature’ named the 
GP2-immune-metagene signature (Supplementary Table 3); included 
within this group of immune clusters were signatures of T cells, B cells, 
macrophages and DCs. Next, using our previously calculated 747 gene 
expression module scores from the AURORA dataset, we selected the 
16 immune-related signatures and calculated the means of these 16 
signatures for each participant and called this newly derived signature 
‘GP2-immune-metagene’.

Merging UNC RAP, GEICAM and AURORA cohorts (RNAseq only). 
To study metastasis in an organ-specific manner, we increased the 
number of the most common sites of metastasis (lung, liver and 
brain) creating a larger dataset. We merged the data of the AURORA 
and RAP101 cohorts and 204 samples of the GEICAM cohort22. Sample 
acquisition and biospecimen processing followed the same protocols 
as the AURORA cohort and were also sequenced at UNC through the 
High-Throughput Sequencing Facility.

Next, we corrected the technical bias detected between the gene 
expression of 259 FFPE and 169 FF samples from 176 primary and 411 
metastatic tumors (428 tumors in total) following the same scheme 
as for correction of AURORA batch effects (including FFPE and FF 
as batches in the formula). To minimize the false-positive results 
due to the normal tissue contamination, we proceeded as we did 
in the AURORA dataset, 1,451 genes of the ‘normal tissue signature’ 
(Supplementary Table 3) were removed from the data matrix of the 

428 AURORA–RAP–GEICAM cohort. From this merged set that is 
already batch corrected and adjusted by normal tissue, we subtracted 
samples from the RAP cohort that were exact duplicates or coming 
from the same original tissue also used in the AURORA cohort; this 
removed 20 of the RAP101 samples. The final cohort of 82 tumors is 
listed in Supplementary Table 2, sheet 5 (RAP study), column name 
‘Freeze cohort_RAP’. This yielded a final cohort of 409 tumors in total 
(155 participants with 155 primaries and 211 paired metastases and 11 
unpaired primaries and 32 unpaired metastases), each summarized 
in Supplementary Table 2.

Next on the three-dataset combined data matrix, we calculated 
the gene signature score for each module as described before, and we 
performed a linear mixed model (LMM) using lmerTest60 and lme4 R 
packages to identify significantly changed modules between meta-
static and primary tumors. In the LM, we included the term ‘patient’ 
as random effect or confounding variable, fit = lmer(genes ~ met/
prim + (1|patient), using all the primary and metastatic tumors except 
the primaries identified as post-treatment primaries (participants who 
received neoadjuvant therapy before primary tumor collection). To 
avoid the possible confounding factor of intrinsic molecular subtype 
in the subsequent analysis, we divided tumors into two datasets based 
on the subtype of the primary tumor from each pair: a ‘luminal set’ com-
prising all LumA, LumB and HER2E subtype participants and a ‘basal-like 
set’ containing basal-like subtype participants only; samples called 
normal-like in the primary or metastatic tumors or post-treatment pri-
mary tumors were removed from the analysis (column ‘Groups PAM50 
Gene Expression Analysis’ from Supplementary Table 2). To identify 
significantly changed modules between brain or liver and their corre-
sponding primary tumors only, the studied sites of metastasis versus 
the corresponding primary pair were compared using the same lmer 
function. The significantly differentially expressed modules (q < 0.05) 
were hierarchically clustered using the ComplexHeatmap R package. 
HeatmapAnnotation and Heatmap functions were used to show the 
heatmap that was previously row ordered by primary and metastatic 
tumors and column ordered by estimates or β values. Differential gene 
expression module analysis in the merged AURORA–RAP–GEICAM 
set was performed in the same way as AURORA only. Multimetastatic 
samples derived from AURORA and RAP and single primary–tumor 
pairs derived from GEICAM with PAM50 classification of normal-like 
in primary or metastatic tumors and post-treatment primary tumors 
were removed from the analysis. For the comparisons between site 
of metastasis using the merged set, we performed SAM66 analysis of 
the list of 747 gene expression modules between 46 liver metastases 
and 18 brain metastases, 46 liver metastases and 24 lung metastases,  
46 liver metastases and 35 lymph node metastases, 18 brain metastases 
and 35 lymph node metastases and 24 lung metastases and 18 brain 
metastases (FDR = 0; Supplementary Table 3).

Statistics and reproducibility
No statistical method was used to predetermine the sample size that 
was limited by the size of the samples provided and successfully assayed 
for this study.

For LMM/linear mixed-effects model and LM analyses between 
primary and metastatic tumors, the lmerTest60 R package summary 
includes a coefficient table with estimates and P values for t-statistics 
using Satterthwaite’s method. These P values were adjusted for mul-
tiple comparisons using the Benjamini–Hochberg approach61,62. 
Non-parametric, two-sided exact tests were used to make comparisons. 
A t-test (two sided) was used for comparisons between two groups, and 
a Mann–Whitney U-test was used when the dependent variable was 
either ordinal or continuous but not normally distributed. A paired 
t-test (two sided) was used for analyzing repeated measures within the 
same groups. Comparisons between more than two groups were per-
formed by analysis of variance (ANOVA) with a post hoc Tukey test (one 
sided). Exact P values were provided whenever possible. The strength 
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of correlations was measured using the Pearson (P) or Spearman (ρ) 
correlation coefficient and the probability of observing a correlation 
with the corresponding P values. Clinical, RNAseq, DNA-sequencing 
and DNAme analyses were performed using RStudio version 1.4.1103 
(http://cran.r-project.org), GraphPad Prism 9.0 software and/or Micro-
soft Excel (version 2210 build 16.0.15726.20070). More details about 
each particular platform analysis are found in each methodology 
section. No randomization or blinding was done in the data collection 
or analyses. No data points were excluded from the analyses unless is 
specified otherwise.

TCGA RNAseq data
We analyzed the BC dataset from TCGA project profiled using the 
Illumina HiSeq system. We included 1,095 primary tumors and 97 
adjacent non-malignant tissues for developing the immune signature 
named ‘GP2-immune-metagene’ and 761 primary tumors and 74 adja-
cent non-malignant tissues for the HLA-A-methylated primary tumor 
analysis and prognostic value of HLA-A. TCGA files were downloaded 
from Broad GDAC Firehose (Supplementary Table 7).

HLA-A immunofluorescence staining
FFPE tissue was sectioned at 4 µm and stained with a CK/HLA-A assay 
developed and optimized at Vanderbilt University Medical Center 
using tyramine signal amplification for increased antigen sensitivity. 
Sections were deparaffinized. Antigen retrieval was performed with 
citrate buffer at pH 6. Endogen peroxidase was blocked with hydrogen 
peroxide, and protein block was applied. Sections were then incubated 
with the first primary antibody, pan-cytokeratin (pan-CK) AE1/AE3 
Biocare, at 1:1,600 overnight at 4 °C, followed by incubation with the 
secondary antibody conjugated with horseradish peroxidase. TSA 
reagent was applied according to manufacturer’s recommendations. 
After washing, antigen retrieval and protein block steps, the second 
primary antibody, HLA-A C6 Santa Cruz at 1:1,300, was incubated 
overnight as described. Counterstaining was performed with DAPI for 
nuclei identification. Tonsil and placenta tissue were used as positive- 
and negative-control tissues.

Whole-slide images were digitally acquired using an AxioScan Z1 
slide scanner (Carl Zeiss) at ×20 magnification. Automated quantifi-
cation was performed via a pathologist-supervised machine learning 
algorithm using QuPath software. Cell segmentation was determined 
on DAPI. Object classifiers were trained on annotated training regions 
from control tissue and tumor samples to define cellular phenotypes. 
Tumor cells were defined by pan-CK expression and subcellular char-
acteristics. Once the algorithm was performing at a satisfactory level, 
it was used for batch analysis. For cases with low, heterogenous or null 
CK expression in which the classifier performance was not optimal, 
tumor areas were manually annotated. Out-of-focus areas, tissue folds, 
necrosis, normal breast and in situ carcinoma were excluded from the 
analysis. Single-cell data were exported from QuPath, and mean HLA-A 
intensity on tumor cells was further calculated in R.

Array-based DNA methylation assay
DNA methylation was evaluated using the Illumina HumanMethyla-
tionEPIC (EPIC) array. The EPIC platform analyzes the DNA methyla-
tion status of up to 863,904 CpG loci and 2,932 non-CpG cytosines, 
spanning gene-associated CpGs and a large number of enhancer/reg-
ulatory CpGs in intergenic regions67. Briefly, DNA was quantified by 
Qubit fluorimetry (Life Technologies), and 500 ng of DNA from each 
sample was bisulfite converted using the Zymo EZ DNA methylation 
kit (Zymo Research) following the manufacturer’s protocol using 
the specified modifications for the Illumina Infinium methylation 
assay. After conversion, all bisulfite reactions were cleaned using 
the Zymo-Spin binding columns and eluted in Tris buffer. Following 
elution, bisulfate-converted DNA was processed through the EPIC 
array protocol. For FFPE samples, the entire bisulfate-converted 

eluate was used as input for the Infinium HD FFPE DNA Restore kit 
and processed through the separate restoration workflow. To per-
form the assay, converted DNA was denatured with NaOH, amplified 
and hybridized to the EPIC bead chip. An extension reaction was 
performed using fluorophore-labeled nucleotides per the manu-
facturer’s protocol.

DNA methylation data packages
DNA methylation data were packaged into the following four levels.

Level 1. Level 1 data contain raw IDAT files (two per sample with 
the extensions _Grn.idat and _Red.idat for the two-color channels) as 
produced by the Illumina iScan system. The mapping between IDAT 
file names and AURORA sample barcodes is provided in Sample.map-
ping.tsv.

Level 2. Level 2 data contain the signal intensities corresponding 
to methylated (M) and unmethylated (U) alleles and detection P values 
for each probe as extracted by the readIDATpair function in the R pack-
age SeSAMe (https://github.com/zwdzwd/sesame) from the IDAT files. 
The P values were calculated using pOOBAH (P value with out-of-band 
probes for array hybridization), which is based on empirical cumulative 
distribution function of the out-of-band signal from all type I probes68.

Level 3. Level 3 data contain β values defined as SM/(SM + SU) for 
each locus calculated using the R package SeSAMe, where SM and SU 
represent signal intensities for methylated and unmethylated alleles. 
The raw signal intensities are first processed with background cor-
rection and dye bias correction. The background correction is based 
on the noob method69. The dye bias is corrected using a non-linear 
quantile interpolation-based method using the dyeBiasCorrTypeINorm 
function68; β values are then computed using the getBetas function. 
Probes with a detection P value greater than 0.05 in a given sample 
are masked as NA. Whether the probe is masked due to detection fail-
ure is recorded in an extra column (Masked_by_Detection_P_value) 
to distinguish from experiment-independent masking of probes 
(N = 105,454) subject to cross-hybridization and genetic polymorphism. 
The experiment-independent masking is based on the MASK_general 
column of the file named EPIC.hg38.manifest.tsv (release 20180909) 
downloaded from http://zwdzwd.github.io/InfiniumAnnotation67. 
From the same source, an additional file (EPIC.hg38.manifest.gencode.
v22.tsv) is also included to provide detailed annotation of transcription 
association for each probe.

Level 4. Level 4 data contain a merged data matrix with β values 
across all samples. Probes masked as NA concerning the probe design 
in level 3 data were removed. Six FFPE samples that initially yielded 
low-quality data were rerun. The resulting two datasets values were 
merged probe-wise by taking the mean β value. If data were masked in 
one of the runs, we took available data from the other run.

Nomenclature for control samples. We included several cell line 
control samples in each batch to allow for the evaluation of potential 
batch effects and to facilitate correction of observed batch effects.

Control sample IDs that start with ‘VARI-Control-’ can be inter-
preted as

VARI-Control-[batch number]-[(cell line name)-(DNA isolate ID 
(A,B,..)]-[assay technical replicate (1,2,3…sequential across batches 
for the same DNA isolate)].

External DNA methylation datasets
We processed additional normal tissue DNA methylation data from 
ENCODE and Gene Expression Omnibus (GEO). We collected raw IDAT 
files for 24 samples from seven tissue types, including adrenal gland 
(n = 5), liver (n = 1), lung (n = 4), ovary (n = 2), skin (n = 4), blood (n = 6) 
and brain (n = 2), that were frequently represented as a site of metas-
tasis. We generated β values using the R package SeSAMe as described 
above for the AURORA samples. Further information on these datasets 
is provided in Supplementary Table 5.
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Global DNA hypermethylation analysis
To examine cancer-associated DNA hypermethylation profiles, we 
first used DNA methylation data from normal tissues to eliminate CpG 
sites that are involved in tissue-specific methylation (mean β value of 
>0.2 in any of the eight tissue types). We eliminated additional CpGs 
that were significantly differentially methylated between FF and FFPE 
samples (t-test FDR-adjusted P value of <0.01 and absolute mean β 
value difference of >0.25). For the heat map analysis shown in Fig. 1c, 
we used 5,000 of the most variably methylated CpGs across tumors. 
The probes lacked methylation in the normal tissues (N = 146,385), and 
the subset (N = 5,000) used in the heat map is listed in Supplementary 
Table 5. Tumor samples in the heat map in Fig. 1c were logically sorted as 
follows to help assess the similarity of DNA methylation profiles among 
matched samples: (1) cases were stratified by PAM50 call in the primary 
tumor; (2) within subtypes, cases were ordered by decreasing median β 
value in the primary tumor; (3) within cases, a primary tumor was listed 
first, followed by metastases for each case; and (4) metastases from the 
same case were ordered by decreasing tumor purity.

Distal element DNA hypomethylation associated with metastasis
We identified 152,211 CpGs in distal enhancer-like signatures (dELSs), 
which fall more than 2 kilobases (kb) from the nearest transcription 
start site, defined by the ENCODE project37. We then selected 19,607 
CpGs that are constitutively methylated across eight normal tissue 
types (mean β value of >0.8). Using the 19,607 CpGs sites, we fitted a 
probe-wise linear mixed-effects model with terms including primary 
versus metastasis, tumor purity and participant (coded as a random 
effect) as implemented in the R package lme4 (ref. 59). P values were 
estimated based on Satterthwaite’s approximation method included 
in the lmerTest60 package in R and adjusted for multiple testing using 
the Benjamini–Hochberg approach61. To examine transcription factors 
that bind to the CpG sites hypomethylated in metastatic tumors, we 
analyzed 11,348 ChIP–seq datasets on 1,359 individual DNA binding 
factors curated in the Cistrome Data Browser70. The statistical signifi-
cance of enrichment for transcription factor binding sites among the 
hypomethylated CpGs was determined using Fisher’s exact test, with 
200-bp regions centered on the target CpGs using the R package LOLA. 
All CpGs on the array overlapping the distal enhancer-like signatures 
were used as the background set. P values were adjusted for multiple 
comparisons using the Benjamini–Hochberg method61.

Putative ESR1 and FOXA1 enhancer target genes affected by 
metastasis-associated DNA hypomethylation
We identified 47 significantly hypomethylated CpGs overlapping the 
binding sites for ESR1 or FOXA1. To investigate putative target genes 
affected by DNA hypomethylation, we first collected 4,681 putative tar-
gets of either ESR1 or FOXA1 in BCs as predicted by Cistrome Cancer70. 
We then considered at most 10 of the nearest genes within 1,000 kb 
upstream and 10 of the nearest genes within 1,000 kb downstream 
from the affected CpG sites, resulting in a list of 121 potential target 
genes (Supplementary Table 5). GO term overrepresentation analysis 
was performed using the enrichGO function with default parameters 
as implemented in the R package clusterProfiler.

Identification of DNA hypermethylation associated with 
metastasis
To identify CpG sites hypermethylated in metastatic tumors compared 
to in primary tumors, we used 146,385 probes unmethylated in normal 
tissues defined above. We fitted a probe-wise linear mixed-effects 
model with terms including primary versus metastasis, tumor purity 
and participant (coded as a random effect) as implemented in the R 
package lme4 (ref. 59). P values were estimated based on Satterth-
waite’s approximation method included in the lmerTest60 package in 
R and adjusted for multiple testing using the Benjamini–Hochberg 
approach61.

CpG target analysis
Probes located in the PcG target sites (Fig. 6e,j,o) were determined 
using H3K27me3 ChIP–seq peaks on the H1 embryonic stem cells gener-
ated by the NIH Roadmap Epigenomics Consortium71. The broad peaks 
were downloaded using the R package AnnotationHub (ID AH28888).

TCGA DNA methylation data
We analyzed the BC dataset from TCGA project, including 761 pri-
mary tumors and 74 adjacent non-malignant tissues profiled using 
the Infinium HumanMethylation450 (HM450) array (Supplementary 
Table 7). IDAT files were processed using the openSeSAMe pipeline 
implemented in the R package SeSAMe.

DNA sequencing of tumor and normal tissue
Due to variable DNA quality, ranging from high (>2 kb; 131 samples) 
to medium (0.5–2 kb; 18 samples) and low (<0.5 kb; 44 samples), the 
193 AURORA samples were binned into three different batches. For 
each batch, library construction used the NEBNext UltraII FS DNA 
library prep kit (New England Biolabs) with a 15-min enzymatic 
fragmentation. Each library received a unique dual-indexed adapter 
(Integrated DNA Technologies), allowing for both low-pass WGS 
and multiplex hybrid capture enrichment. Libraries were pooled 
at 2–4 µl based on final library quality and yield. To evaluate library 
representation due to variable DNA quality, we performed a survey 
of WGS sequencing for proper library balancing. The pooled librar-
ies were concentrated and diluted to 2.25 nM for survey sequencing 
on the NovaSeq 6000.

Exome hybrid capture used the IDT xGen Exome Research Panel 
v1.0 enhanced with the xGenCNV Backbone Panel-Tech Access (Inte-
grated DNA Technologies). The remaining pooled libraries were 
hybridized to this probe set according to the manufacturer’s pro-
tocol. The captured products were eluted following precipitation 
with streptavidin-labeled magnetic beads, amplified by PCR and 
quantitated before dilution and preparatory flow cell amplification 
for Illumina sequencing. Illumina paired-end sequencing (recipe: 
151 × 17 × 8 × 151) was performed on the NovaSeq 6000 using the S4 
flow cell configuration. For WGS, we targeted 5× coverage, and for 
whole-exome sequencing, we aimed for an average unique, on-target 
sequencing coverage depth of 500× for the tumor and 250× for the 
matched normal tissue.

Churchill secondary analysis for DNA sequencing
The Nationwide Children’s Hospital (NCH)-developed Churchill sec-
ondary analysis pipeline3 was used to process paired-end read data 
for all samples, using attached unique molecular identifiers. Reads 
were aligned to reference genome GRCh38.d1.vd1 via bwa-mem, with 
the resulting alignment deduplicated using GATK’s (Picard) MarkDu-
plicates and base scores recalibrated using GATK’s BaseRecalibrator 
and ApplyBQSR. Variant calling was then performed on the final 
deduplicated, recalibrated BAM files. Germline variants were called 
using GATK’s HaplotypeCaller; somatic variants were called using 
GATK’s Mutect2, with the paired normal samples used to exclude 
germline variants. Somatic variant filters from Mutect2 were applied, 
and additional filtering of somatic variants from FFPE sources was 
performed using corrected variant allele frequency, read start diver-
sity and unique read ends as indicators of preservation-sourced 
artifacts. Descriptions of the specific filters can be found below. 
All single-nucleotide variants (SNVs) and insertions and deletions 
(indels) were annotated via SnpEff using the GDC.h38 GENCODE 
v22 database. To ensure that samples were of usable quality, depth 
and breadth metrics were generated by mosdepth, oxidation and 
insert size metrics were generated by GATK’s CollectOxoGMetrics 
and CollectMultipleMetrics tools, and sequence usability (duplicate, 
softclipping, mapq0, unaligned) metrics were generated via samtools 
and custom scripts.
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FFPE filtering
FFPE_filter_LMR_VAF_0.04. Local mismatch rate-corrected variant 
allele frequency below 4%. The local mismatch rate of a variant is the 
number of mismatched bases in all reads aligned within a 10-bp win-
dow on each side of the position divided by the total number of bases 
aligned in this region. This value (LMR) is subtracted from the variant 
allele frequency, and if the result is below 4%, the variant will be filtered.

FFPE_filter_RSD. Read start diversity filter. The number of unique 
start positions of all variants supporting reads are counted (after soft 
trimming). For variants with over 15 supporting reads, at least four 
unique starting positions are required to pass this filter. For variants 
with over five supporting reads, at least two unique starting positions 
are required.

FFPE_filter_URE. Unique nearest read end filter. For all variant support-
ing reads, either the start position or the end position, whichever is clos-
est to the variant (after soft trimming), is recorded. For variants with 
over 15 supporting reads, at least four unique positions are required 
to pass this filter. For variants with over five supporting reads, at least 
two unique positions are required.

Analysis of genomic alterations between primary and 
metastatic tumors
For the analysis of significantly mutated genes between primary and 
metastatic tumors, we first filtered the MAF file to only include the 
following variant classifications: Frame_Shift_Del, Frame_Shift_Ins, 
In_Frame_Del, In_Frame_Ins, Missense_Mutation, Nonsense_Mutation, 
Nonstop_Mutation, Splice_Site and Translation_Start_Site. We next 
constructed a binary gene by sample matrix (1 = any mutation, 0 = no 
mutation) only using gene mutations that were present in 10 or more 
AURORA samples (n = 100). To mitigate the possible impact of FFPE 
artifacts coming mainly from primary tumors, mutation calls were 
filtered by removing any primary mutation calls that were not present 
in a paired metastatic sample (two primary samples without a paired 
metastatic sample were removed), with a total of 78 samples (39 
pairs). Metastatic samples were aggregated by participant and were 
considered mutated if at least one metastatic sample for the partici-
pant was mutated. We constructed a contingency table for mutated or 
non-mutated samples and tested for statistical significance between 
primary tumor and metastasis using Fisher’s exact test.

DNA copy number variations (CNVs) and LOH
Copy number changes and LOH events in WGS samples were detected 
using GATK’s GermlineCNVCaller, with the Churchill pipeline’s final 
BAM alignments as input. Reads were counted for CNV detection across 
a binned 1,000-nucleotide intervals, and allele counting for LOH detec-
tion was confined to single-nucleotide polymorphisms within gnomAD 
that had a frequency of 0.01% or greater. Germline CNV events were 
identified by comparing individual normal samples to a panel of nor-
mal samples composed of all other germline normal samples. Somatic 
CNV events were identified by comparing each somatic sample for an 
individual to that individual’s paired germline normal sample. Follow-
ing this, CNV events were annotated with the symbols of genes they 
affected, producing gene-specific denoised log2 copy ratios.

Additionally, copy numbers derived from the raw denoised copy 
ratio signal were produced and plotted across the HLA locus chro-
mosome 6:28510120–33480577. A smoothing factor was applied by 
reducing the number of regions into bins by 50-fold and calculating 
the mean log2 value for each bin. HLA-A/HLA-B/HLA-C/HLA-DRB5 genes 
were specifically noted for overlap with prominent deletions in the 
region (log2 ratio < −0.75, focal mean difference between tumor and 
normal of >0.25 and ~40 kb upstream of the HLA-A gene). Following the 
same threshold applied to the HLA-A gene, the B2M gene was adjusted 
by tumor purity (>–0.4).

DNA copy number analysis (CNA) between primary tumors 
and metastases
For the analysis of DNA copy number between primary tumors and 
metastases, we first collapsed the log2 copy ratio mean denoised val-
ues (gene-level CNA values) to 533 segment-level CNA scores. The 
complete list of genes in each segment was previously described72 (we 
excluded ‘Y chromosome’ and ‘chr2:53680282-53845245.BeroukhimS5.
amp’ segments that scored 0 in all samples). Each segment score was 
calculated as the mean of gene-level CNA values across genes within 
the segment. CNA segment values were transformed into binary data 
(CN gain or loss cutoff of 0.2 and −0.2, respectively). Only samples in 
the WGS_DNA Seq FreezeSet 135 set and the Pairs_WGS_DNAseq sets of 
Supplementary Table 2 were used, and from the two primary samples 
for participant AER5, the A738_H04 sample was removed. We next 
compared CNA segment gains and losses in AURORA primary versus 
metastatic samples using Fisher’s exact test to determine if there were 
non-random associations between gain or loss on 46 primaries and 
87 metastases. We constructed a contingency table for gains and a 
contingency table for losses for each segment of interest and tested 
for statistical significance.

Clonality and tumor purity
Clonal variation within and among tumor samples was assessed using 
superFreq. Output BAM alignments from the Churchill pipeline were 
filtered down to only unique reads overlapping a probe-targeted 
region. The filtered alignments were then regenotyped using Var-
scan2 to identify the presence or absence of each of a case’s variants 
in each of its samples. With these inputs, superFreq assesses likely 
copy number and LOH events in combination with SNVs and indels 
to generate the most likely substructure of clones for each sample. 
The percent composition of tumor cells of all clones was totaled to 
determine the cellularity of each sample. For each clone, variants 
in ClinVar- and COSMIC-listed genes are highlighted as well as likely 
damaging mutations (frameshift and nonsense); these variants were 
then queried in the VarSome database, with ‘pathogenic’ and ‘likely 
pathogenic’ variants being considered as potentially consequential 
clonal variation..

Neoantigen prediction
Somatic variants from samples where both RNAseq and 
DNA-sequencing data were available were evaluated as potential neo-
antigens using pVACseq, part of the pVACtools package. SNVs and 
indels, after Mutect2 filtering and FFPE filtering, when appropriate, 
were combined with gene expression data to identify and prioritize 
tumor-specific neoepitopes that are both expressed and have a pre-
dicted increased binding affinity compared to the wild-type epitope 
in the context of the participant’s HLA class I alleles. Parameters used 
within the pVACseq pipeline and subsequent filtering are included in 
Supplementary Table 6.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
Accession numbers and data sharing are summarized in Supplementary 
Table 7. Briefly, all newly generated data are in dbGAP (AURORA study: 
phs002622.v1.p1; RAP study: phs002429.v1.p1) and GEO (AURORA 
study: RNAseq data (GSE209998), DNA methylation data (GSE212375); 
RAP study: RNAseq data (GSE193103)). All of the resources used during 
the studies outlined in this manuscript are summarized in Supplemen-
tary Tables 1–5 and in the Methods. Supplementary Table 2 includes 
the clinical and molecular characteristics available for each cohort 
used in this manuscript. Previously published GEICAM trial data that 
were reanalyzed here are available in dbGAP (phs001866) and GEO 
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(GSE147322). The human BC data were derived from the TCGA Research 
Network (http://cancergenome.nih.gov/). Previously published human 
TCGA-BRCA DNA methylation and TCGA-BRCA RNAseq data are avail-
able at NCI GDC (https://portal.gdc.cancer.gov/legacy-archive) and at 
dbGaP (phs000178) (https://gdac.broadinstitute.org/runs/stddata_lat-
est/data/BRCA/20160128/), respectively. All other data supporting 
the findings of this study are available from the corresponding author 
upon reasonable request.

Code availability
R packages and scripts used to analyze the data, along with input data, 
are explained in the Methods. All packages are public and are freely 
available online. No new code or mathematical algorithms were gener-
ated from this manuscript.
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Extended Data Fig. 1 | See next page for caption.

http://www.nature.com/natcancer


Nature Cancer

Resource https://doi.org/10.1038/s43018-022-00491-x

Extended Data Fig. 1 | Survival outcomes according to clinical subtypes 
of AURORA cohort. a. Kaplan-Meier, log-rank test and Cox proportional 
hazards regression model methods were used to study the overall survival 
from breast cancer diagnosis (‘First Primary Receptor at diagnosis’ column of 
Supplementary Table 2) in HER2 positive (HER2+, n = 10 patients), Hormone 
receptor positive and HER2 negative (HR + /HER2-, n = 17 patients) and TNBC 
(triple-negative breast cancers, n = 19 patients). b. Kaplan-Meier, the log-rank 
test and Cox proportional hazards regression model to study the overall survival 
from metastatic breast cancer diagnosis (‘Metastasis original receptors’ column 
of Supplementary Table 2) in HER2 + (n = 9 patients), HR + /HER2- (n = 24 
patients) and TNBC (n = 21 patients). In absence of HR/HER2 status in the 
metastatic relapse we used the data from the most recent biopsy. c-d. Frequency 
bar chart displaying the frequency of clinical subtype (c) and molecular subtype 
(d) in AURORA (n = 123 tumors) compared with TCGA (n = 1027 tumors). In the 

AURORA cohort, we assigned ER and HER2 clinical status to those samples that 
had missing clinical values using the mRNA surrogates. e-g. Boxplot displaying 
the risk of recurrence based on subtype (ROR-S) (e) and proliferation (ROR-P) 
(f) and Proliferation score from PAM50 predictor (g) comparing TCGA primary 
tumors (n = 1027 tumors) vs AURORA primary tumors (n = 44 tumors) vs 
AURORA metastatic tumors (n = 70 tumors). Statistically significant values are 
highlighted in red. Comparison between more than 2 groups was performed 
by ANOVA with post hoc Tukey’s test, one-sided (panels e, f, and g). Normal-like 
samples were removed from this analysis. Box-and-whisker plots from panels 
e, f, and g, display the median value on each bar, showing the lower and upper 
quartile range of the data (Q1 to Q3) and data outliers. The whiskers represent 
the lines from the minimum value to Q1 and Q3 to the maximum value. EBC, 
early breast cancer; MBC, metastatic breast cancer; confidence interval (CI). 
Statistically significant values are highlighted in red.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Clinical subtype and molecular subtype distribution 
according to site of metastasis. a. Distribution of the 55 diagnosed primary 
tumors (n = 39 primaries) by clinical receptor status (TNBC, ER+/HER2-, HER2+, 
and unknown, left side) linked to their anatomic sites of metastasis (n = 63 
metastases). Clinical receptor status at the time of first primary diagnosis 
(‘First Primary Receptors’ column of Supplementary Table 2). b. Distribution 
of 39 diagnosed primary tumors by gene expression-based intrinsic molecular 
subtype when available (left) linked to their anatomic sites of metastasis (right). 

c. TNBC and non-TNBC subtype proportions of primary (left, n = 39 primaries) 
and paired metastatic (right, n = 64 metastases) tumors by TNBCtype25. d. 
Comparison of subtype classifications between TNBC subtype and PAM50 of 
primary (left, 39 primaries) and paired metastatic (right, 63 metastases) tumors. 
LumA, Luminal A; LumB, Luminal B; CL, Claudin-low; NL, normal-like; BL1, basal-
like 1; BL2, basal-like 2; IM, immunomodulatory; LAR, luminal androgen receptor; 
M, mesenchymal-like; MSL, mesenchymal stem-like.
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Extended Data Fig. 3 | Correlation analysis between paired data in each 
genomic approach. a-d. Correlation heatmap representing the correlation 
matrix of (a) RNAseq data, n = 63 tumor pairs (gene expression values) (b) DNA 
methylation data, n = 65 tumor pairs (β-values), (c) DNA somatic variants, n = 20 
tumor pairs (binary data: 1, mutated and 0, non-mutated) and (d) DNA copy 
number variants, n = 87 tumor pairs (gene-specific denoised log2 copy-ratios) 
of paired primary and metastatic tumors. The relationship between variables 
has been calculated using the Pearson correlation coefficient. e-h. Comparison 
of Pearson correlation means between primary and paired metastasis, random 
primary and metastatic tumors, primaries and metastasis belonging to different 
patients, primary samples belonging to different patients, and metastasis 

samples belonging to different patients of (e) RNAseq data, n = 63 tumor pairs 
(gene expression values) (f) DNA methylation data, n = 65 tumor pairs (β-values), 
(g) DNA somatic variants, n = 20 tumor pairs (binary data: 1, mutated, 0 non-
mutated) and (h) DNA copy number variants, n = 87 tumor pairs (gene-specific 
denoised log2 copy-ratios). P values between groups were calculated using t-test, 
two-sided (panels, e, f, g, and h). In panels e, f, g, and h, all Box-and-whisker plots 
display the median value on each bar, showing the lower and upper quartile range 
of the data (Q1 to Q3) and data outliers. The whiskers represent the lines from the 
minimum value to Q1 and Q3 to the maximum value. P, Primary; M, metastasis.
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Extended Data Fig. 4 | Correlation between tumor cellularity metrics and 
immune signatures. a. Supervised hierarchical clustering of the top 1,000 
leukocyte-specifically methylated probes and the bottom 1,000 tumor tissue-
specifically methylated probes, after ranking all probes based on the mean 
leukocytes - mean tumor tissues. For the 133 tumors, association is shown with 
tumor type, tumor purity, and estimated leukocyte fraction scores26,27. b. Pearson 
correlation between the difference (Metastasis – Primary gene expression values, 
n = 40 tumor pairs) of the Leukocyte fraction scores and GP2-Immune-Metagene 
signature scores (calculated from the Level 4 RNAseq data). Higher scores mean 
higher expression in metastasis compared to primary tumors. Correlation was 
measured using the Pearson correlation coefficient (r) and p values were used 
to assess the significance of the correlation. c. Spearman correlations (Rho) 

between GP2-Immune-Metagene signature scores and several pathology-
determined scores (% Tumor nuclei, % of normal cells, % of Stromal cells, % 
Lymphocyte infiltration and tumor cellularity) or genomic scores (Estimate-
Stromal scores, Estimate-Immune Score and Estimate Score using ESTIMATE 
method57 using 65 tumors (23 primary and 42 metastasis). Rho (spearman 
correlation coefficient, ρ), p values were used to assess the significance of the 
correlation. d. Pearson correlation (r) of GP2-Immune-Metagene signature score 
and % of Tumor nuclei from pathology report using 65 tumors (23 primary and 
42 metastasis). P values were used to assess the significance of the correlation. 
Statistically significant values are highlighted in red. GP2-Immune-Metagene 
signature scores were calculated from the Level 4 RNAseq data (see Methods). 
LumA, Luminal A; LumB, Luminal B.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Supervised analysis of gene expression signatures 
according to site of metastasis in AURORA or combined AURORA-RAP-
GEICAM cohorts. a. Heatmap depicting the differentially expressed (DE) 
signatures between primary (n = 26) and metastasis (n = 69) in the AURORA 
cohort using all samples. b. Heatmap depicting the DE signatures between paired 
primary (n = 5) and brain metastasis (n = 5) in the AURORA cohort. c. Heatmap 
depicting the DE signatures between paired primary (n = 6) and liver metastasis 
(n = 6) in the AURORA cohort. d. Heatmap depicting the DE signatures between 
basal-like paired primary (n = 5) and brain metastasis (n = 8) in the AURORA-
RAP-GEICAM cohort. d. Heatmap depicting the DE signatures between luminals 
(LumA, LumB, and HER2E) paired primary (n = 21) and liver metastasis (n = 24) 
in the AURORA-RAP-GEICAM cohort. Significance of the differences between 

primary and metastasis was calculated using linear mixed models (q < 0.05 in 
AURORA and q < 0.02 in AURORA-RAP-GEICAM). Significant signatures are row 
ordered from high to low according to β coefficients (or regression coefficients) 
and divided according to upregulated (positive) or downregulated (negative) 
in metastasis. Patients are column ordered according to PAM50 molecular 
subtype and divided according to primary and metastasis. Signatures scores 
were calculated in the Level 4 RNAseq data (see Methods). Normal-like tumors 
and post-treatment primaries were removed from the analysis. For more 
information about the background/origin of the signatures listed in this figure, 
see Supplementary Table 3, sheet 2. LumA, Luminal A; LumB, Luminal B; LN, 
lymph node.
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | HLA-A gene and protein expression levels in metastatic 
samples and impact on immune-related features in metastatic tumors. a. 
Bar plot depicting the frequency of HLA-A Unmethylated, and HLA-A methylated 
samples divided by primary and metastatic tumors. Fisher’s exact test was used 
to compare the proportion of categories (the number of samples is shown in 
the figure). b. Boxplots of HLA-A, -B, and C mRNA gene expression levels and 
according to HLA-A protein expression (n = 37 metastasis). HLA-A protein 
expression values were divided into tertiles on the basis of low (lower third; 
n = 14), intermediate (middle third; n = 12), or high intensity (upper third, n = 11). 
Comparison between more than 2 groups was performed by ANOVA with post 
hoc Tukey’s test, one-sided. Statistically significant values are highlighted in red. 
Comparisons between 2 paired groups were performed by t-test. Comparison 
between more than 2 groups was performed by ANOVA with post hoc Tukey’s 
test, one-sided. All Box-and-whisker plots display the median value on each 
bar, showing the lower and upper quartile range of the data (Q1 to Q3) and data 
outliers. The whiskers represent the lines from the minimum value to Q1 and Q3 
to the maximum value. Normal-like samples were removed from this analysis. 
Statistically significant values are highlighted in red. c. Linear relationship 
between number of neoantigens and HLA-A, -B and C gene expression Level 4 

RNAseq data (see Methods) of basal-like only primary and metastatic tumors. 
The correlation was measured using the Pearson correlation coefficient. d. 
Violin plots showing changes in gene expression for HLA-A, -B, and -C between 
primary and metastatic samples (Difference: Metastasis – Primary gene 
expression values) in basals (right panel, n = 34 tumors) and luminals/HER2E 
metastatic tumors (right panel, n = 34 tumors). e. Patient-specific changes in 
gene expression for HLA-A, -B, and -C between primary and metastatic samples 
(Difference: Metastasis – Primary gene expression values) in basal-likes, (left 
panel, n = 24 tumors) and luminals/HER2E metastatic tumors (right panel, 
n = 34 tumors) of AURORA cohort. Normal-like paired and unpaired tumors 
were removed from this analysis (Paired Normal and unpaired group from the 
‘Pairs-PAM50-Prim’ column of Supplementary Table 2). f. Correlation matrix and 
unsupervised hierarchical clustering of CIBERSORTx-based immune-cell scores 
in basal-like samples (n = 42, 17 primary and 25 Metastasis). Positive clusters 
(PC1 and PC2) and negative clusters (NC1 and NC2) reflect the highest or lowest 
correlated immune-related signature scores per CIBERSORTx. Correlation was 
measured using the Pearson correlation coefficient and p values <0.05 are shown 
as (*). ns, non-significant. Prim, primary; Met, metastasis; LumA, Luminal A; 
LumB, Luminal B.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Difference in HLA-A and immune-signature expression 
between primary and metastatic tumors. a. Waterfall plot of AURORA cases 
showing the difference between primary (n = 36 tumors) and metastasis (n = 60 
tumors) (Difference: Metastasis – Primary gene expression value) ordered from 
the highest (left) to the lowest (right) signature score for HLA-A mRNA expression 
(upper panel). The bottom panel shows the difference between primary and 
metastases for GP2-Immune-Metagene values. Yellow stars highlight HLA-A 
Hypermethylated cases and green stars highlight the samples with DNA HLA-A 

focal deletions. b. Waterfall plot of RAP cases showing the difference between 
primary (n = 12 tumors) and metastasis (n = 40 tumors) (Difference: Metastasis 
– Primary gene expression value) ordered from the highest (left) to the lowest 
(right) signature score for HLA-A mRNA expression (upper panel). The bottom 
panel shows the difference of primary versus metastases for GP2-Immune-
Metagene values. Pairs with a Normal-like primary tumor were removed from the 
analysis. LumA, Luminal A; LumB, Luminal B.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | HLA-A methylated primary tumors and prognostic 
value of HLA-A in TCGA data. a. Oncoprint diagram depicting HLA-A and HLA-B 
methylated cases using 761 primary tumors of TCGA-BRCA dataset according 
to PAM50 molecular subtype. b. Proportion of each molecular subtype found in 
HLA-A (68) and HLA-B (8) methylated tumors. c. Hypermethylated CpG sites in 
HLA-A (9 CpG sites) using 761 TCGA primary breast tumors and 74 tumor-adjacent 
breast tissues (n = 835 samples). d. Boxplots of HLA-A mRNA gene expression 
levels according to DNA methylation status (n = 761 tumors). Comparisons 
between 2 paired groups were performed by t-test, two-sided. e. Scatter plot 
showing the correlation between HLA-A mRNA expression values and DNA 
methylation levels (β-values) (n = 761 tumors). f. Boxplots of gene expression 
signature B cell/T cell cooperation and IgG scores according to DNA methylation 
status in tumors and tumor-adjacent breast tissues in TCGA-BRCA (n = 761 
tumors). Comparison between 2 groups was performed by ANOVA with post hoc 

Tukey’s test, one-sided. Statistically significant values are highlighted in red. Each 
mark represents the value of a single sample. g. Kaplan-Meier plots using the log-
rank test of overall survival from primary tumors according to HLA-A methylation 
status (n = 760 tumors). h. Multivariable Cox proportional hazards analyses of 
TCGA BRCA patients for overall survival prediction using the covariates of HLA-A 
methylation status, PAM50 subtypes, and tumor stage (10 Stage IV patients were 
removed from the analysis) (n = 744). Hazard ratio (HR) = 1: no effect. HR < 1: 
reduction in hazard. HR > 1: increase in hazard. Statistically significant values are 
highlighted in red. All Box-and-whisker plots display the median value on each 
bar, showing the lower and upper quartile range of the data (Q1 to Q3) and data 
outliers. The whiskers represent the lines from the minimum value to Q1 and 
Q3 to the maximum value. Unme, unmethlylated; HyperMe, hypermethylated. 
LumA, Luminal A; LumB, Luminal B.
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Extended Data Fig. 9 | Metastatic tumor-associated DNA hypomethylation 
at distal enhancer elements. a-d. Analysis of putative enhancer target genes 
involved in the regulation of cell adhesion. For each gene, a comparison of 
distal element DNA methylation between 29 primary and 72 metastatic tumors 

is shown on the left, and putative target gene expression between methylated 
(β value ≥ 0.4) vs. unmethylated (β value of < 0.4) tumors is shown on the right. 
The p values were calculated using Welch’s two-sample t-test, two-sided. LumA, 
Luminal A; LumB, Luminal B; Claudin, Claudin-low.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | DNA methylation alterations associated with 
metastatic tumors. a-i. Analysis of metastasis-associated promoter DNA 
hypermethylation of three genes (JAM3, YBX3 and SYNDIG1) encoding 
components of tight junctions or regulation of adhesion molecules. For each 
gene, a comparison of promoter CpG DNA methylation between primary 
and metastatic tumors is shown on the left (a, d, g), a second comparison of 
promoter CpG DNA methylation between ① unmethylated primaries (β-value 

of <0.3) and their paired metastasis and ② methylated primaries (β-value of 
> 0.3) with their paired metastasis (b, c, e) is shown in the middle, and a third 
comparison of gene expression between primary and metastatic tumors based 
on all samples (All), Luminal A-B and HER2E only (luminals/HER2E), and basal-
like subtype only (basals) is shown on the right (c, f, i). LumA, Luminal A; LumB, 
Luminal B; P, primary; M, metastasis; P-Unme, Unmethylated primary; P-Me, 
Methylated primary.

http://www.nature.com/natcancer







	Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers ...
	Results
	Clinical features of the cohort and global genomic patterns
	Gene expression subtype switching and genomic signature differences
	HLA-A dysregulation and impact on antitumor immunity
	Epigenetic suppression of cell adhesion in metastases
	Clonal evolution and subtype switching

	Discussion
	Methods
	Clinical summary
	Pathology review
	AURORA sample acquisition and biospecimen processing
	RNAseq, gene expression data values and normalization
	Gene expression analysis of RNAseq data and batch effect adjustments
	PAM50 subtype classification
	Gene expression signatures
	Merging UNC RAP, GEICAM and AURORA cohorts (RNAseq only)

	Statistics and reproducibility
	TCGA RNAseq data
	HLA-A immunofluorescence staining
	Array-based DNA methylation assay
	DNA methylation data packages
	Nomenclature for control samples

	External DNA methylation datasets
	Global DNA hypermethylation analysis
	Distal element DNA hypomethylation associated with metastasis
	Putative ESR1 and FOXA1 enhancer target genes affected by metastasis-associated DNA hypomethylation
	Identification of DNA hypermethylation associated with metastasis
	CpG target analysis
	TCGA DNA methylation data
	DNA sequencing of tumor and normal tissue
	Churchill secondary analysis for DNA sequencing
	FFPE filtering
	FFPE_filter_LMR_VAF_0.04
	FFPE_filter_RSD
	FFPE_filter_URE

	Analysis of genomic alterations between primary and metastatic tumors
	DNA copy number variations (CNVs) and LOH
	DNA copy number analysis (CNA) between primary tumors and metastases
	Clonality and tumor purity
	Neoantigen prediction
	Reporting summary

	Acknowledgements
	Fig. 1 Study design and global genomic patterns of metastatic breast tumors.
	Fig. 2 Subtype switching and supervised analysis of gene expression signatures between primary and metastatic tumors.
	Fig. 3 Individuals with multiple metastases were examined for immune features in the AURORA–RAP combined cohort.
	Fig. 4 HLA-A dysregulation and impact on immune-related features in metastatic tumors.
	Fig. 5 Metastatic tumor-associated DNA hypomethylation at distal enhancer elements.
	Fig. 6 Multiomics participant characterization of individual AURORA cases.
	Extended Data Fig. 1 Survival outcomes according to clinical subtypes of AURORA cohort.
	Extended Data Fig. 2 Clinical subtype and molecular subtype distribution according to site of metastasis.
	Extended Data Fig. 3 Correlation analysis between paired data in each genomic approach.
	Extended Data Fig. 4 Correlation between tumor cellularity metrics and immune signatures.
	Extended Data Fig. 5 Supervised analysis of gene expression signatures according to site of metastasis in AURORA or combined AURORA-RAP-GEICAM cohorts.
	Extended Data Fig. 6 HLA-A gene and protein expression levels in metastatic samples and impact on immune-related features in metastatic tumors.
	Extended Data Fig. 7 Difference in HLA-A and immune-signature expression between primary and metastatic tumors.
	Extended Data Fig. 8 HLA-A methylated primary tumors and prognostic value of HLA-A in TCGA data.
	Extended Data Fig. 9 Metastatic tumor-associated DNA hypomethylation at distal enhancer elements.
	Extended Data Fig. 10 DNA methylation alterations associated with metastatic tumors.




