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ABSTRACT

Background: Immunotherapy is a rapidly evolving treatment option in breast cancer (BC);
However, the BC immune microenvironment is understudied in Black and younger (<50 years)
patients. Methods: We used histological and RNA-based immunoprofiling methods to
characterize the BC immune landscape in 1,952 tumors from the Carolina Breast Cancer Study,
a population-based study that oversampled Black (n=1,030) and young women (n=1,039). We
evaluated immune response leveraging markers for 10 immune cell populations, compared
profiles to those in the Cancer Genome Atlas Project [n=1095 tumors, Black (n=183), and young
women (n=295)], and evaluated in association with clinical and demographic variables,
including recurrence. Results: Consensus clustering identified three immune clusters in CBCS
[adaptive-enriched, innate-enriched, or immune-quiet] that varied in frequency by race, age,
tumor grade and subtype; however, only two clusters were identified in TCGA, which were
predominantly comprised of adaptive-enriched and innate-enriched tumors. In CBCS, the
strongest adaptive immune response was observed for basal-like, HER2+, TNBC, and high-
grade tumors. Younger patients had higher proportions of adaptive-enriched tumors, particularly
among estrogen receptor (ER)-negative cases. Black patients had higher frequencies of both
adaptive-enriched and innate-enriched tumors. Immune clusters were associated with
recurrence among ER-negative tumors, with adaptive-enriched showing the best and innate-
enriched showing the poorest 5-year recurrence-free survival. Conclusion: These data suggest
that immune microenvironments are intricately related to race, age, tumor subtype, and grade.
Impact: Given higher mortality among Black and young women, more defined immune
classification using cell-type specific panels could help explain higher recurrence and ultimately

lead to targetable interventions.
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INTRODUCTION

The tumor microenvironment plays a major role in the clinical course of breast cancer
(BC). Clinical trials have shown that high levels of tumor-infiltrating lymphocytes (TILs),
consisting primarily of cytotoxic (CD8+) T cells, CD19+ B cells and a small population of natural
killer (NK) cells™ 2 positively predict therapeutic response in triple-negative (TNBC) and HER2-
positive BC*®. Gene expression surrogates of TILs and immune biomarkers have corroborated
these findings® . However, few studies have evaluated immune response in diverse patient
populations® °. Black women and young patients may have unique immune responses'®", but
are often under-represented in clinical studies. Furthermore, both groups experience higher

14-16

mortality rates than older and non-Hispanic White women and are more likely to be

%1818 'which tend to be more immune infiltrated™.

diagnosed with basal-like and TNBC subtypes

Several studies have shown increased immune infiltrates in tumors from Black BC
patients®®%, but studies have conflicted. Resolution of this literature has been challenging due
to focus on small numbers of immune cell-specific markers, and smaller sample sizes of Black
and young women, which has limited ability to simultaneously consider the role of tumor
subtype, grade and age. Prior studies have also emphasized tumor banks and clinical trials,
which tend not to include earlier stage, smaller tumors that are an important part of the clinical
population of breast cancers. In light of intensive ongoing research on immune-targeting
therapies, studies clearly defining the tumor immune landscape among clinically and racially
diverse patient populations and with a broad panel of immune markers are needed to develop a
clearer picture of the immune landscapes of breast cancers.

Here, we used gene expression profiling and histologic approaches to characterize the
BC immune microenvironment, leveraging data from the Carolina Breast Cancer Study
(N=1,952 cases), a population-based study that oversampled Black (n=1,030) and younger

(n=1,039) women. We selected 48 RNA-based markers indicative of 10 major cell-types (B-cell,

T-cell, CD8-T cell, T-helper cell, Treg, Tth, eosinophil, neutrophil, natural killer (NK) cell, and

4
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macrophage) to evaluate overall global patterns of immune response and to assess the role of

immune gene expression in recurrence within a diverse, population-based sample.

METHODS
Study Population

The Carolina Breast Cancer Study (CBCS)® is a three-phase population-based study
that utilized rapid case ascertainment with the North Carolina Central Cancer Registry to identify
women aged 20-74 years across 44 counties diagnosed with first primary BC from 1993-1996
(Phase 1), 1996-2001 (Phase 2), and 2008-2013 (Phase 3). Black and younger women (<50
years) were oversampled using randomized recruitment®®. Of 4,806 BC cases enrolled, 1,952
bulk tumor samples were profiled by Nanostring (Phase 1: N=252; Phase 2: N=454; Phase 3:
N=1246) after exclusions for depleted tissue (n=1,188) or low-quality RNA (n=241). Samples
with depleted tissue and degraded RNA were predominantly from the older, Phase 1 study
where fewer sections were collected and stored in suboptimal conditions for RNA isolation. This
study was approved by the University of North Carolina at Chapel Hill (UNC-CH) School of
Medicine Institutional Review Board in accordance with the revised U.S. Common rule, and
participants provided written informed consent.
Demographic and Clinical Characteristics

Health history, demographic variables and measurements for body mass index (BMI)
were collected by a nurse during in-home interviews. Race was self-reported and categorized
as White/non-Black or African American/Black; <5% of non-Black participants self-identified as
multiracial, Hispanic, or other race/ethnicity and were grouped with non-Black for statistical
analyses. While genetic ancestry and self-reported race are strongly concordant in CBCS?, we
interpret race herein as a social construct, representing the culmination of biological, social and
environmental exposures. Tumor size, AJCC stage, estrogen receptor (ER), progesterone
receptor (PR), HER2 receptor, node status, and tumor grade were obtained from medical

5
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records, pathology reports and immunohistochemical (IHC) staining performed at UNC-CH.
Tumor grade was assigned by a pathologist in Phases 1 and 3. For grade adjustment analyses,
missing grade (474/1952) was imputed with the Multivariate Imputation by Chained Equations
packagezs, incorporating ER/PR/HER2 status, node status, race, age, tumor stage, size, p53
mutation status, survival, grade and study phase as predictor variables, using the method
described by Ali et al®®. In a sensitivity analysis including clinically assigned grade and a missing
value indicator, RFDs and 95% confidence intervals remained stable relative to imputed grade
(Supplemental Table 1). Patient characteristics are described in Table 1. Sample percentages
are displayed both unweighted and weighted to original NC demographics to account for the
sampling design of CBCS, which oversampled Black and younger women using randomized
recruitment. Sampling weights were set based on incidence to ensure equal proportions of
younger Black, older Black, younger non-Black and older non-Black participants®.

Recurrence data were available for CBCS Phase 3 (2008-2013; n = 1246). Recurrence-
free survival (RFS) was defined as the time between date of diagnosis to first local, regional or
distant recurrent BC and verified through medical record review. Recurrence data are complete
through October 2019 with 5-year follow-up for all women. Among 1246 eligible women, 47
participants were stage IV at diagnosis and excluded from recurrence analysis. Among 1199

patients (Stage I-1ll), 143 recurrences were identified.

Gene Expression Data

Normalization, Molecular Subtyping and Immune-Related Genes

RNA was isolated from bulk tumor tissue using the Qiagen FFPE RNeasy isolation kit
(Germantown, MD) and assayed using Nanostring nCounter technology (Seattle, Washington)
as previously described'®. Multiple codesets, including the PAM50 molecular subtype predictor®’
and an immune expression panel were used; therefore, we utilized Remove Unwanted Variation

(RUV) to harmonize across batches as previously described® (Supplemental Table 2). PAM50

220z dunf /| uo Jasn euljoied YUoN Jo Aussamun Aq ypd-zLel-12-1d9/5L0G1 LE/ZLEL-LZ-|dT'G966-G501/85 L L 0L /10p/spd-ajone/dqeo/B10"s|euinolioee/:dyy woly papeojumoq



136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

molecular subtyping was performed using a research version of the predictor to classify tumors
as Luminal A, Luminal B, HER2-Enriched, Basal-like or Normal-like, and to generate risk of
recurrence scores (ROR-PT) incorporating tumor size, proliferation and subtype'® *'. We also
curated a 48-gene panel of immune markers based on previous work® *, representing 10
major cell types from both adaptive and innate arms of the immune system (B-cell, T-cell, CD8-
T cell, T-helper cell, Treg, T follicular helper (Tfh), eosinophil, neutrophil, NK and macrophages),

cytotoxic cells and PDL1 (CD274)(Supplemental Table 3).

Immune Cell Scores and Identification of RNA-Based Global Immune Clusters

Three tiers of immune variables were considered in this study: (1) global immune
clusters based on clustering across all immune genes; (2) adaptive-cell vs. innate-cell scores
calculated across multiple cell types based on median expression, and (3) individual cell-type
scores calculated based on median expression across cell-type specific genes.

For each participant, 10 cell-type specific scores were calculated for all n genes related
to a given cell type (e.g. B-cell genes, n=7), in addition to scores for cytotoxic cells, adaptive-
cells, innate-cells and PD-L1, as listed in Supplemental Table 3% 34, The median and average
log2 expression (computed for each participant across the n genes) were similar and the
median was ultimately selected to minimize skew due to extreme values. Adaptive-cell scores
were calculated by computing the median log2 expression among all genes related to B-cell, T-
cell, CD8-T cell, T-helper cell, Treg and Tfh cells, and an innate-cell score was calculated by
computing the median log2 expression among all genes related to eosinophil, neutrophil, NK
and macrophages. Cytotoxic-cell genes and PD-L1 (CD274) were not included in adaptive-cell
and innate-cell scores due to expression of these markers on cells from both arms of the
immune system>. In a validation experiment, we used immunofluorescence and protein-based
digital spatial profiling (DSP)* to assess concordance between RNA-based and protein-based

measurements (Supplemental Figure 1). Immunofluorescence-based CD19 was positively
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correlated with RNA-based CD19 quantification and RNA-based B-cell scores (Supplemental
Figure 1A,B). Similarly, RNA-based ICOS and CD8A expression was positively correlated with
DSP-based expression (Supplemental Figure 1C,D).

For each tumor, we also assigned a single global immune class. Global immune classes
(clusters) were based on clustering analysis in CBCS and TCGA, and used to group tumors
based on similarity in their immune-related gene expression patterns across all 48 immune
genes in our panel. Due to differences in RNA expression platforms (i.e., NanoString vs
RNAseq), the scope of immune genes present, and sample population, we began with
independent immune class discovery in CBCS and TCGA to validate use of our immune panel.
To ensure stability of these global immune clusters in each dataset, the ConsensusClusterPlus
Bioconductor package® was used to run 1000 clustering iterations with 90% subsampling, the
Pearson distance metric and average linkage method. Gene expression was median-centered
and visualized using the ComplexHeatmap R package®. To explore relationships with tumor
and patient characteristics, we also developed a classifier of CBCS immune clusters using

Classification to the Nearest Centroid (ClaNC)*® and applied to TCGA.

Quantification of tumor infiltrating lymphocytes

The Genie algorithm from Aperio’s digital pathology software (Leica Biosystems) was
trained to digitally quantify TILs from hematoxylin and eosin stained tissue microarrays,
excluding cores with degraded tissue, >50% red blood cells or cysts (n=996 with RNA
immunoprofiling). The tissue classifier was trained using a representative feature library of
manually annotated epithelium, stroma, adipose and immune (TILs) tissue compartments, and
optimized through iterative rounds of adjustment parameter modification and visual assessment.
Each quantified compartment area was then divided by the total tissue area per case and
multiplied by 100. Reproducibility of digital lymphocyte quantification was evaluated by a study

pathologist, where high agreement was found between digital and pathological review.
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Percent of TILs in tissue was considered as a continuous variable and log2-transformed for

analysis.

Statistical Analysis

Comparison of expression levels and TILs across global immune clusters was performed
using ANOVA with Tukey multiple comparisons test and Welch’'s two sample t-tests.
Generalized linear models (glm) were used to calculate relative frequency differences (RFD) as
the measure of association between immune clusters and covariates of interest. RFDs are
estimated based on a general linear model, and are interpretable as the percentage difference
between index and referent groups. Multivariable models were adjusted for age and race in
reduced models, and additionally adjusted for tumor grade in full models. Note that in reduced
models comparing age or race, age comparisons were only adjusted for race, and race
comparisons were only adjusted for age. Kaplan-Meier curves and log-rank tests were used to
compare mean time to recurrence across global immune clusters in stage I-1ll cases (n=1199).
Hazard ratios (HR) and 95% CI were calculated using Cox proportional hazard models, and
adjusted for patient age, race, and tumor stage. The assumption of proportionality was
assessed via the Wald p-value. There was evidence of non-proportional hazards, however point
estimates from models that included covariate-time interaction terms did not differ substantially
from the model without the time interaction term. All statistical analyses were performed in R
version 4.0.3.
Data Availability

TCGA BC dataset, including 1095 primary tumors, is publicly available under dbGaP

accession phs000178.v1.p1. TCGA BC dataset was used to validate the use of our immune

panel in BC samples, and leveraged for the availability of multiple data platforms for each case,
including RNA sequencing, leukocyte-specific DNA methylation markers*' and histological TIL

quantification by study pathologists. These data and description of related methods are

220z dunf /| uo Jasn euljoied YUoN Jo Aussamun Aq ypd-zLel-12-1d9/5L0G1 LE/ZLEL-LZ-|dT'G966-G501/85 L L 0L /10p/spd-ajone/dqeo/B10"s|euinolioee/:dyy woly papeojumoq



211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

available at https://gdc.cancer.gov/about-data/publications/PanCan-CellOfOrigin*', with patient

characteristics described in Table 1. CBCS data are available upon request

(https://unclineberger.org/cbcs).

RESULTS

Global Immune Classes of the BC immune microenvironment

We evaluated immune gene expression in two datasets [CBCS (n=1952) and TCGA BC
(n=1095)], that differed according to clinical and demographic variables. The population-based
CBCS sample was comprised of 53.2% young women (<50 years) and 52.8% Black
participants, while 38.9% of tumors were classified as low-grade, 33.6% low-stage, 56.8% node-
negative 62.9% ER-positive and 27.5% Basal-like (Table 1). Compared to TCGA, CBCS had
higher proportions of young (<50 years) and Black participants, and higher proportions of low-
stage, node-negative, ER-negative, and Basal-like tumors (Table 1). After accounting for
randomized recruitment, the distribution of molecular tumor subtypes was similar between both
studies, but younger age, low stage, node-negative and ER-negative remained more prevalent
in CBCS.

We identified three stable global immune clusters in CBCS using consensus clustering
with our 48-gene panel: (1) adaptive-enriched, (2) innate-enriched and (3) immune-quiet
(Figure 1A). Tumors in the adaptive-enriched cluster displayed the highest median immune
expression (Figure 1B) and was characterized by the highest expression of the overall
adaptive-cell score, and highest levels of B-cell, Tth, Treg, T-helper cell, T-cell, CD8-T cell and
PD-L1 (CD274) scores (Supplemental Figure 2). The innate-enriched cluster had the highest
eosinophil and neutrophil scores (Supplemental Figure 1) and the highest overall innate-cell
score expression. The immune-quiet cluster had the lowest overall immune expression (Figure
1B), including the lowest adaptive-cell and innate-cell score expression, but displayed

significantly elevated macrophage scores (Supplemental Figure 2). Corresponding with
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pathologic evaluation, TILs were significantly higher in adaptive-enriched tumors compared to
immune-quiet (p=0.00001) and innate-enriched (p<0.000001) (Figure 1C,D). Thus, these
clusters represent both overall immune expression patterns and cell-type specific differences in
immune response.

Given the availability of the full CIBERSORT 547-gene immune deconvolution panel in
TCGA RNA-Seq data*?, we compared our classification with CIBERSORT-based estimation,
filtering to the cell types represented in our targeted immune panel. Expression patterns by
CIBERSORT expression patterns mirrored those in our targeted panel (Figure 2A, lower panel).
However, in independent analysis, only two stable immune clusters were identified in TCGA:
overall Immune-High and Immune-Low (Figure 2A,B), which could be reflective of differing
tumor and demographic characteristics in this dataset. The Immune-High group shared features
of the CBCS adaptive-enriched cluster, with higher DNA methylation-based estimates of
leukocytes*' (Figure 2C), and higher TIL counts (Figure 2D,E).

Because the TCGA seemed not to include the immune-quiet cluster based on
unsupervised clustering in independent discovery, we used CBCS centroids to identify all three
immune classes in TCGA. Distance to centroid showed that 85.5% of Immune-High tumors
were classified as adaptive-enriched, while 87.5% of Immune-Low tumors were innate-enriched
or immune-quiet. The adaptive-enriched cluster was found in nearly half (n=489, 44.7%) of
TCGA tumors, while innate enriched was the other dominant class (n=532, 48.6%). The
immune-quiet cluster was rare in TCGA (n=74, 6.8%) and similar to CBCS, consisted
predominantly of low stage (I/ll) and Luminal A tumors (Supplemental Figure 3).

We compared our three clusters to 6 published immune-related subtypes identified using
160 validated immune signatures in TCGA PanCancer*®. The adaptive-enriched cluster had the
highest frequency of ‘C2-IFNy-dominant’ and ‘C3-Inflammatory’ subtypes. Innate-enriched and
immune quiet were associated with ‘C1-Wound-healing’ and ‘C4-Lymphocyte-depleted’.
Additionally, the immune-quiet had the highest frequency of the rare (3% prevalence in TCGA
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PanCancer) ‘C6-TGFB-dominant’ subtype, which is characterized by an immunosuppressive

phenotype (Supplemental Figure 3).

Immune Response, Patient and Tumor Characteristics in CBCS

We evaluated associations between immune clusters and patient age at diagnosis, race,
tumor grade, stage, node status and BMI in CBCS. Relative to immune-quiet, the adaptive-
enriched cluster was associated with young age, high grade, and low BMI, while both adaptive-
enriched and innate-enriched were associated with Black race (Figure 3). Adaptive-enriched
and innate-enriched clusters remained significantly associated with Black race when also
adjusting for tumor grade, but associations between adaptive-enriched, young age and BMI
were attenuated. There were no significant associations with node status or tumor stage.

Global immune clusters were strongly associated with both clinical and molecular BC
subtypes. Adaptive-enriched was associated with IHC-based HER2+/HR- (HER2+) BC, and
both adaptive-enriched and innate-enriched were strongly associated with TNBC, the RNA-
based Basal-like subtype and high ROR-PT scores (Figure 4). Combined race and age
adjustments were not possible in PAM50 and ROR-PT models due to high collinearity.
However, we performed a sensitivity analysis restricting to ER-positive tumors, since this
subtype is known to be less immunogenic'®. Among ER-positive tumors only, adaptive-enriched
remained strongly associated with Black race and high grade, but not age (Supplemental
Figure 4). Conversely, young age was associated with both adaptive- and innate-enriched
clusters among ER-negative tumors, despite race and grade adjustments (Adaptive RFD

[95%CI]:14.2 [2.4, 25.9]; Innate: 14.2 [2.3, 26.0]).

Global Immune Clusters and Recurrence
The CBCS identified 143 recurrences during the first five years of follow up and we
assessed associations between the three immune clusters and recurrence using both Kaplan-

Meier analyses and multivariate Cox proportional hazards models. Results underscore the
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importance of ER as a modifier. Considering all tumor subtypes, immune-quiet and adaptive-
enriched tumors were associated with improved RFS, while innate-enriched had the poorest
RFS (Figure 5A). However, after stratification by ER status, significant associations were
limited to ER-negative tumors (Figure 5B,C), where adaptive-enriched tumors had the best

RFS and innate-enriched tumors had the poorest RFS.

DISCUSSION

This study investigated the BC immune microenvironment in a large and diverse
population-based study and identified a novel class of immune response that is immune-quiet.
This subtype was present at very low prevalence in TCGA, emphasizing that diverse cohorts
representing the full range of tumor phenotypes are valuable for understanding the diversity of
immune response. In this racially diverse cohort, we also showed that Black women had higher
frequencies of adaptive-enriched and innate-enriched tumors. These racial differences persisted
in ER-stratified analyses, suggesting that they are not driven exclusively by subtype and may
reflect other race-associated exposures or stressors. Young age and high grade were also
associated with adaptive response. Immune response differences showed the strongest
relationships with recurrence among ER-negative cancers.

Our results showing associations between immune response and tumor molecular
subtypes are in line with previous literature, where the highest immune expression levels were
observed in aggressive tumors (TNBC, basal-like, HER2-enriched subtypes'®, high ROR-PT
scores and high grade*). Several smaller studies have reported immunological differences
between Black and non-Black BC patients suggesting elevated immune infiltrates in tumors
from Black women®>%°. Here, we observed strong and independent associations between race
and the immune microenvironment; but race differences were consistently smaller in magnitude
than those for grade and subtype. Our finding of increased adaptive-enriched expression was
consistent with a smaller study by Yao et al** that identified higher TILs in tumors from Black
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women while matching on age and subtype. However, adaptive immune responses in cancer
are complex, with conflicting associations between the presence of certain lymphocyte
populations and patient outcomes***. Thus, further delineation and spatial evaluation of the
distribution of specific immune cell populations may be needed to resolve some of the
conflicting studies. We also observed a high frequency of innate-enriched tumors in Black
women. This cluster may be particularly important, as it was associated with aggressive
subtypes/high ROR-PT scores and had the highest recurrence hazards in our study.

Studies of tumor immune microenvironment have emphasized clinical features, but
herein we also assessed immune differences by age and BMI, as both can systemically impact
immune function'. Building upon previous work in rodent models'?, young age was associated
with the strongest immune response among ER-negative tumors. Conversely, tumors from
patients with BMI =225 were more frequently immune-quiet. Previous studies have suggested
that high BMI is associated with increased macrophage infiltration, and we found evidence that
immune-quiet tumors had high macrophage infiltration (while lacking other innate immune cell
signals). Thus, the association of high BMI with this cluster appears consistent with multiple

4951 |dentification of other

studies linking obesity with macrophage-mediated BC pathogenesis
social or institutional variables that impact immune phenotypes is important, particularly in
understanding race as a social construct. As such, disentangling race, age, and a larger range
of individual and community-level variables is an important future direction.

While our study recapitulated previous findings emphasizing abundance of immune cell
infiltrates (i.e. TILs) showing that robust adaptive response predicts lower recurrence among
ER-negative tumors®®, we also present novel data suggesting that the character of immune
response, not just abundance, is important in BC outcomes. Specifically, we show that innate-
enriched tumors had the poorest RFS. While the innate-enriched group had the lowest
lymphocyte-related expression, this finding also suggests that the patterns of specific innate cell

types may be important, particularly given that the immune-quiet cluster also had lower
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lymphocyte expression but did not convey the poorest survival. Previous studies have found
some associations between innate immune cell expression, poor survivorship®® and resistance
to neoadjuvant chemotherapy in BC®. Our data extends those previous findings in largely
Caucasian tumor bank studies to a population-based cohort enriched for younger and Black
women. Given that Black race was strongly associated with both adaptive-enriched and innate-
enriched clusters, these data suggest that some Black women may be candidates for immune-
checkpoint blockade. However, in-depth investigation of the role of innate immune cells in BC is
needed to address the high prevalence of poor-prognosis innate-enriched tumors among this
patient population.

The CBCS and TCGA differ in that TCGA is skewed toward more late stage, large
breast tumors due to the minimum tissue requirements, and has larger proportions of older,
white women (PMID: 30131556). In contrast, CBCS represents a broader and more natural
distribution of stage in the population, including an increased frequency of small, early-stage
tumors. In line with our finding that immune-quiet tumors tended to be smaller and ER-positive,
our results suggest higher proportions of immune-quiet tumors in CBCS, making this cluster
more readily discernable. These data suggest this immune subtype would be higher in clinical
populations than predicted based on TCGA breast cancer data.

A strength of our analysis was use of a large, population-based cohort for which we
optimized a custom immune cell-focused codeset suited to FFPE specimens. This targeted
approach may miss some rare cell types (i.e. mast cells) and differs from immune panels
focused on activation/exhaustion states. Nevertheless, our custom panel has twice the number
of innate cell-specific genes than the commonly used nCounter Breast Cancer 360 Panel
(BC360™). This balanced inclusion of cell markers resulted in strong representation from both
adaptive and innate pathways and correlated with large and validated immune signatures®? **.
However, future studies of cell type distribution and spatial arrangement of cell types may be
valuable. Future studies, with larger recurrence rates or longer follow up times, could also
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consider how subtype, age, race and immune response interact on a more granular level (e.g.
stratifying on age, race, and subtype).

Given that younger patients and Black women are more frequently diagnosed with
aggressive BC subtypes and have higher burden of poor outcomes, it is important to understand
immunological differences in these patients. Our discovery of a novel immune-quiet cluster with
27% prevalence in a population-based cohort also suggests that it is important to study immune
response in diverse cohorts. In addition, methods that utilize cell-type specific markers are
important because of distinct survivorship patterns among ER-negatives that depend on the

dominant immune phenotype present.
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Table 1. Characteristics of Study Population

CBCS
TCGA BRCA CBCS Weighted %*
n (%) n (%) (%)*
Total 1095 1952
Age
<50 years 295 (26.9) 1039 (53.2) (34.0)
250 years 798 (72.9) 913 (46.8) (66.0)
Missing 2(0.2)
Race
Black 183 (16.7) 1030 (52.8) (26.1)
non-Black 816 (74.5) 922 (47.2) (73.9
Missing 96 (8.8)
Grade
Grade | NA 248 (12.7) (16.9)
Grade Il NA 511 (26.2) (30.9)
Grade lll NA 719 (36.8) (31.1)
Missing 474 (24.3) (21.2)
Stage
Stage | 182 (16.6) 655 (33.6) (39.6)
Stage I 619 (56.5) 952 (48.8) (44.7)
Stage I 249 (22.7) 255 (13.1) (12.1)
Stage IV 20 (1.8) 67 (3.4) (2.6)
Missing 25 (2.3) 23(1.2) (0.9)
Node Status
Negative 516 (47.1) 1109 (56.8) (59.0)
Positive 558 (51) 843 (43.2) (41.0)
Missing 1(1.9)
ER Status
Positive 807 (73.7) 1228 (62.9) (71.0)
Negative 239 (21.8) 714 (36.6) (28.6)
Missing 49 (4.5) 10 (0.5) (0.4)
PAM50
Basal 190 (17.4) 536 (27.5) (20.8)
HER2-enriched 82 (7.5) 179 (9.2) (8.2)
Luminal A 566 (51.7) 850 (43.5) (51.4)
Luminal B 217 (19.8) 307 (15.7) (14.8)
Normal-like ( 7) 66 (3.4) (4.0)
Missing 14 (0.7) (0.9)

* Percentages weighted for study design to approximate distribution of age and race in NC

population.

TCGA= the Cancer Genome Atlas, BRCA= breast cancer, CBCS = Carolina Breast Cancer Study,
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ER = estrogen receptor.

FIGURE LEGENDS

Figure 1. Global immune clusters in CBCS. (A) Heatmap of RNA immune expression, with
top dendrogram ordered by consensus clustering and displaying adaptive-enriched (blue),
innate-enriched (Purple) and immune-quiet (green) classes. Denoted are PAM50 molecular
subtype, race, and sample-level overall median immune expression across clusters. Highly
expressed immune genes in each cluster are indicated by the colored dendrograms on the left
of the heat map (B) Overall median immune gene expression across three global immune
clusters. (C) Boxplot displaying the log2-transformed percent of lymphocytes quantified in tissue
from CBCS tissue microarrays (D) Representative H&E images of immune-quiet, innate-
enriched and adaptive enriched tissue sections (upper panel), with lymphocyte quantification

algorithm overlay (lower panel).

Figure 2. Imnmune clusters in TCGA BC. (A) Heatmap of RNA immune expression clusters
identified by consensus clustering using 48-gene panel, showing immune-high (dark blue) and
immune-low (sky blue) classes, PAM50 subtype and race (upper panel), as well as
CIBERSORT immune cell estimates (lower panel). (B) Boxplots displaying overall median
immune gene expression, (C) DNA leukocyte scores (D) and histological TIL quantification
across RNA-based immune classes. (E) Representative H&E images of lymphocytic infiltrate in

immune-low and immune-high tissue sections.

Figure 3. Association between CBCS immune clusters, patient and tumor characteristics.
Forest plot displaying relative frequency differences and 95% confidence intervals for patient

age, race, BMI, tumor grade, stage and node status across global immune clusters. Reduced
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models were adjusted for age and race in where appropriate (black points) and full models were
additionally adjusted for grade (blue points). Referent groups for each individual model are

indicated in figure, and sample size (n) and percentages are listed for each model. RFD: relative
frequency difference; 95% Cl: 95% confidence interval; BMI: body mass index; Immune referent

group= Immune-Quiet for all models.

Figure 4. Association between CBCS immune clusters and clinical and molecular tumor
subtypes. Forest plot displaying relative frequency differences and 95% confidence intervals for
clinical (IHC-based) HER2+/HR- and TNBC subtypes, RNA-based Basal-like vs non-Basal
molecular subtypes and ROR-PT scores adjusted for age (black points) and both age and race
(blue points). Referent groups for each individual model are indicated in figure, and sample size
(n) and percentages are listed for each model. RFD: relative frequency difference; 95% Cl: 95%
confidence interval; BMI: body mass index; Immune referent group= Immune-Quiet for all

models.

Figure 5. Five-year recurrence-free survival (RFS) by global immune cluster in CBCS.
Kaplan-Meier survival analysis illustrating 5 year RFS in (A) all CBCS phase 3 cases, (B)
among ER-negative tumors only and (C) among ER-positive tumors only. Cox proportional
hazard ratios and 95% confidence intervals adjusted for patient age, race and tumor stage are
displayed within each plot for innate-enriched and immune-quiet clusters relative to adaptive-
enriched. All analyses were restricted to stage I-lll tumors. Tick marks represent censored
individuals. ER: estrogen receptor; HR: hazard ratio; 95% CIl: 95% Confidence Interval. Referent

group= Adaptive-enriched for CoxPH models.
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Variable n (%)
255(49.2) 263 (50.8)

Age: <50 vs
>50 years (Ref.) 428 (52.5) 387 (47.5)
356 (57.5) 263 (42.5)
222 (42.9) 296 (57.1)

Race: Black vs
non-Black (Ref.) 43°(53:5) 380 (46.6)
373(60.3) 246 (39.7)
159 (30.7) 302 (58.3)

Grade: Ill vs
Ul (Ref) 22°(276) 301(36.9)
335(54.1) 156 (25.2)
75(14.5) 440 (84.9)

Stage: lll/IV vs
Ul (Ref) '43(175)  659(80.9)
104 (16.8) 508 (82.1)
223 (43.1) 295 (56.9)

Node Status:
(+) vs (-) (Ref.) 347 (426) 468 (57.4)
273 (44.1) 346 (55.9)
383(73.9) 130 (25.1)

BMI: 225 vs
<25 (Ref.) 593 (72.8) 210 (25.8)
441(71.2) 168 (27.1)
n (no. of cases) =& & EE
100 200 300 400 500
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Variable n (%) Ref. n (%) Immune Class
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