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ABSTRACT  

Background: Reproductive factors have been shown to be differentially associated with risk 

of estrogen receptor (ER) positive and ER-negative breast cancer. However, their 

associations with intrinsic-like subtypes are less clear. 

Methods: Analyses included up to 23,353 cases, and 71,072 controls pooled from 31 

population-based case-control or cohort studies in the Breast Cancer Association Consortium 

across 16 countries on 4 continents. Polytomous logistic regression was used to estimate the 

association between reproductive factors and risk of breast cancer by intrinsic-like subtypes 

(luminal A-like, luminal B-like, luminal B-HER2-like, HER2-enriched-like, and triple-

negative) and by invasiveness. All statistical tests were 2-sided. 

Results: Compared to nulliparous women, parous women had a lower risk of luminal A-like, 

luminal B-like, luminal B-HER2-like and HER2-enriched-like disease. This association was 

apparent only after approximately 10 years since last birth and became stronger with 

increasing time (odds ratio [OR] = 0.59, 95% confidence interval [CI] = 0.49 to 0.71; and OR 

= 0.36, 95% CI = 0.28 to 0.46; for multiparous women with luminal A-like tumors 20-<25 

years after last birth and 45-<50 years after last birth, respectively). In contrast, parous 

women had a higher risk of triple-negative breast cancer right after their last birth (for 

multiparous women: OR = 3.12, 95%CI = 2.02 to 4.83) that was attenuated with time but 

persisted for decades (OR = 1.03, 95%CI = 0.79 to 1.34, for multiparous women 25 to <30 

years after last birth). Older age at first birth (P-heterogeneity<.001 for triple-negative 

compared to luminal-A like) and breastfeeding (P-heterogeneity<.001 for triple-negative 

compared to luminal-A like) were associated with lower risk of triple-negative but not with 

other disease subtypes. Younger age at menarche was associated with higher risk of all 

subtypes; older age at menopause was associated with higher risk of luminal A-like but not 

triple-negative breast cancer. Associations for in situ tumors were similar to luminal A-like. 
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Conclusion: This large and comprehensive study demonstrates a distinct reproductive risk 

factor profile for triple-negative breast cancer compared to other subtypes, with implications 

for the understanding of disease etiology and risk prediction. 
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INTRODUCTION 

Reproductive factors such as parity, age at first birth, and breastfeeding are established breast 

cancer risk factors [1]. Although there is strong evidence for differential associations by 

estrogen receptor (ER) status of the tumor [2, 3], associations with risk of intrinsic-like breast 

cancer subtypes defined by the cross-classification of ER, progesterone receptor (PR), human 

epidermal growth factor receptor 2 (HER2) status and grade are unclear [4, 5].   

Parity and younger age at first birth are associated with lower risk for developing ER-

positive or luminal tumors [2, 4-9], but this protection does not seem to extend to ER-

negative or triple-negative tumors [2, 4-7, 10]. Studies investigating time since last birth have 

shown a transient increase in breast cancer risk associated with childbirth followed by long-

term protection [11-14]. More recent studies evaluating subtypes suggest the transient 

increased risk to last <10 years for ER-positive tumors [15] but persist even ≥25 years after 

last birth for ER-negative tumors [8, 16]. Breastfeeding seems to be most often associated 

with a decreased risk of breast cancer, although this is not entirely consistent, especially for 

ER-negative or triple-negative tumors [4, 5, 9, 10, 17]. A lower breast cancer risk associated 

with older age at menarche and younger age at menopause is most consistent for ER-positive 

or luminal tumors [2, 4, 6, 7, 10, 18]. Effect modification by age of associations between 

reproductive risk factors and risk of breast cancer subtypes has been reported with conflicting 

results [6, 8, 19, 20]. 

 Elucidating these relationships between reproductive risk factors and breast cancer 

subtypes as well as invasiveness helps delineate the etiologic heterogeneity of breast cancer 

as well as informs the development of subtype-specific risk prediction. To this end, we 

pooled data from 31 population-based studies to evaluate primarily risk of invasive intrinsic-

like subtypes and secondarily risk of invasiveness (ER-positive, ER-negative) and in situ 
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tumors associated with reproductive history. We also aimed to assess whether associations 

differ by age. 

METHODS 

Study sample 

Thirty-seven population-based case-control or cohort studies from the Breast Cancer 

Association Consortium were eligible for inclusion in the analysis. Following exclusions 

shown in Supplementary Figure 1, the final study sample included 47,350 cases with 

known invasiveness (including 23,353 with known intrinsic-like subtype) and 71,072 controls 

from 13 prospective cohort studies, and 18 case-control studies. Studies included [21-50] are 

described in Supplementary Table 1. All individual studies were approved by their 

institutional review boards and/or medical ethical committees. Written informed consent was 

obtained from all study subjects. 

 Information about breast cancer risk factors and breast cancer tumor markers is 

described in the Supplementary Methods. 

 

Statistical analyses 

Polytomous logistic regression was used to fit multivariable models to estimate case-control 

odds ratios (ORs) and 95% confidence intervals (CIs) for associations with breast cancer 

subtypes for time since last birth (in 12 5-year categories) in women with different numbers 

of births (nulliparous (ref.), 1, 2, ≥3 births), and the following additional variables: age at first 

birth (<20 years (ref.), 20-<25, 25-<30, ≥30), breastfeeding duration (0 months (ref.), >0-6, 

>6-12, >12-24, >24), age at menarche (≥15 years (ref.), 14, 13, ≤12), and age at menopause 

(<50 years (ref.), 50-54, ≥54, premenopausal). We fit two models with all the covariates – 

one for intrinsic-like subtypes and the other for ER-positive/ER-negative/in situ subtypes as 

the outcome variables. All analyses were further adjusted for age at reference date (date of 
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diagnosis for cases, date of interview for controls) and study. A category for missing values 

was included for covariates as well as intrinsic-like subtypes. 

Heterogeneity in breast cancer risk factor associations between subtypes was 

evaluated using polytomous logistic regression for case-case comparisons with luminal A-

like as reference for intrinsic-like subtypes, and ER-positive as reference for ER-positive/ER-

negative/in situ subtypes, including the same variables as the case-control models. 

Categorical variables were modelled as ordinal variables using the median value for each 

category. Both case-control and case-case models included the same covariates as described 

above, and the same number of cases. Case-case analyses excluded controls and used luminal 

A-like / ER-positive as the comparison group. 

As secondary analyses and for comparison to previous reports evaluating reproductive 

factors by subtypes, we also fit a series of multivariable polytomous logistic regression 

models similar to those described above excluding time since last birth. These simpler models 

were also used to evaluate potential effect modification by age on these associations between 

risk factors and intrinsic-like subtypes. Multivariable associations were stratified by 5-year 

age categories based on reference age. Heterogeneity in estimates across 5-year age 

categories was tested using the likelihood-ratio test comparing models with and without an 

interaction term between age and each reproductive risk factor of interest as ordinal variables 

using the median value for each category (P-interaction). Each subtype was tested separately 

in a case-control comparison in models fit excluding cases of the other subtypes. 

We performed analyses to assess heterogeneity of risk estimates by study design using 

a likelihood-ratio test comparing models with and without an interaction term between study 

design and each reproductive risk factor of interest as ordinal variables using the median 

value for each category (P-interaction). To further test for heterogeneity by study, analyses 

were additionally performed by study and the results meta-analyzed using a random-effects 
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model. To explore the robustness of our results, risk associations were assessed excluding 

studies with missing data in >90% of cases or controls on time since last birth or 

breastfeeding duration. 

 All statistical tests were two-sided; statistical significance was considered with P 

values <0.05. Statistical analyses were performed using SAS, version 9.4 (SAS Institute). All 

figures were created using Wolfram Mathematica, version 12.1 (Wolfram Research). 

RESULTS 

The distributions of risk factors according to intrinsic-like subtype are shown in Table 1.  

Associations between reproductive risk factors and invasive intrinsic-like subtypes: case-

control analyses 

 Compared with nulliparous women, uniparous women were at decreased risk of breast 

cancer ~30 years after birth (Figure 1, Table 2 for ORs (95%CIs)). Biparous and multiparous 

women had a higher risk of luminal A-like than nulliparous women within ~10 years since 

their last birth before crossing over to having lower risk. There was evidence of a stronger 

risk decrease for multiparous (OR = 0.59 [95% CI =0.49 to 0.71] and OR =0.36 [95% CI 

=0.28 to 0.46] for 20 to <25 and 45 to <50 years after last birth, respectively) than biparous 

women. For triple-negative disease, parous women were at higher risk than nulliparous 

women, particularly within 5 years after last birth (OR = 3.12, 95% CI = 2.02 to 4.83) for 

multiparous women), with this relative increase in risk attenuating over time but persisting 

until 25-<30 years after last birth (OR = 1.03, 95% CI = 0.79 to 1.34) with no crossover in 

risk. 

Heterogeneity of associations between reproductive risk factors and invasive intrinsic-like 

subtypes: case-case analyses 

Tests for OR heterogeneity by subtypes based on case-case comparisons showed 

statistically significant differences in the ORs for time since last birth for triple-negative 
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compared to luminal-A-like breast cancer among uniparous (P-heterogeneity<.001), biparous 

(P-heterogeneity<.001), and multiparous women (P-heterogeneity=.01). ORs for all the other 

subtypes were not significantly different from that for luminal-A-like tumors 

(Supplementary Figure 2, Supplementary Table 3). Increasing age at first birth was 

associated with decreasing risk of triple-negative breast cancer, but not other intrinsic-like 

subtypes (P-heterogeneity<.001 for triple-negative compared to luminal-A like). 

Breastfeeding for >6 months was associated with lower risk of triple-negative breast cancer 

compared to no breastfeeding in parous women, but not other disease subtypes (P-

heterogeneity<.001 for triple-negative compared to luminal-A like). Older age at menarche 

was inversely associated with risk of all subtypes, with strongest associations for luminal-A-

like (P-heterogeneity>.17). Older age at menopause was significantly associated with modest 

increase in risk of luminal A-like, luminal B-HER2-like and HER2-enriched-like breast 

cancer, but not luminal B-like or triple-negative breast cancer. However, test for OR 

heterogeneity by subtype was not statistically significant (P-heterogeneity>.24). These case-

case analyses further demonstrate that evidence for etiological heterogeneity was strongest 

for luminal A-like vs. triple-negative tumors. 

Associations between reproductive risk factors and intrinsic-like subtypes stratified by age 

Age modified the associations of number of births (P-interaction=.009) (Figure 2, 

Supplementary Table 4), age at first birth (P-interaction<.001) (Supplementary Figure 3, 

Supplementary Table 5) and breastfeeding duration (P-interaction=.01) (Supplementary 

Figure 4, Supplementary Table 6) with risk of luminal A-like disease. Risk associations 

were strongest for younger women in their 40’s and attenuated with increasing age. In 

contrast, younger age at menarche was associated with higher risk of triple-negative breast 

cancer, particularly for younger women (P-interaction=.002) (Supplementary Figure 5, 

Supplementary Table 7). There was no evidence that other associations between 
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reproductive risk factors including age at menopause (Supplementary Figure 6, 

Supplementary Table 8) and intrinsic-like subtypes were modified by age. 

Associations between reproductive risk factors and invasiveness (ER status and in situ) 

For comparability to previous reports, we also evaluated associations by ER status 

and in situ disease (for case-control comparisons: Figure 3, Supplementary Table 9; for 

case-case comparisons: Supplementary Figure 7, Supplementary Table 10). Overall, 

reproductive risk factor associations with risk of in situ and invasive ER-positive breast 

cancer were like those observed for luminal-like subtypes. Associations for invasive ER-

negative were like those we reported for triple-negative tumors, while associations for 

invasive ER-positive were more similar to those for luminal-like tumors. A notable finding 

was that breastfeeding for >6 months was associated with a decreased risk for ER-negative 

disease while longer breastfeeding duration of >24 months was necessary for similar decrease 

in risk for ER-positive and in situ disease. 

Associations between reproductive risk factors excluding time since last birth and invasive 

intrinsic-like subtypes as well as invasiveness (ER status and in situ) 

Parity was associated with decreased risk of all intrinsic subtypes except triple-

negative, for which there was an increased risk becoming weaker with additional births 

(Supplementary Figure 8, Supplementary Table 11). Increasing age at first birth also 

showed differential associations, with increasing risk of luminal A-like but decreasing risk of 

triple-negative breast cancer. Associations between other risk factors and intrinsic-like 

subtypes were like those from the model fit with time since last birth. Likewise, tests for OR 

heterogeneity by subtypes based on case-case comparisons were like those from the model 

that included time since last birth (Supplementary Figure 9, Supplementary Table 12). 

In case-control comparisons, associations between risk factors and risk of ER+/ER-/in 

situ tumors were in line with those from the model fit with time since last birth 
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(Supplementary Figure 10, Supplementary Table 13). Tests for OR heterogeneity by 

invasiveness and in situ based on case-case comparisons (Supplementary Figure 11, 

Supplementary Table 14) were similar to those from the model fit with time since last birth 

in that there were differences in the ORs for number of births (P-heterogeneity<.001), age at 

first birth (P-heterogeneity=.009), and breastfeeding duration (P-heterogeneity<.001) for ER- 

compared to ER+ disease. ORs for age at menarche for in situ disease was also different to 

those for ER+ disease (P-heterogeneity=.002). 

Sensitivity analyses 

There was no evidence for heterogeneity by study design for associations between 

reproductive risk factors and intrinsic-like subtypes (P-heterogeneity>.08) except for age at 

menopause (P-heterogeneity=.001) (Supplementary Figures 12-19). Excluding studies that 

had missing data on time since last birth or breastfeeding duration in >90% of cases or 

controls yielded substantially unchanged results (Supplementary Figure 20). 

DISCUSSION 

This report provides the strongest evidence to date for differential associations 

between reproductive risk factors and breast cancer subtypes, as well as precise relative risk 

estimates for subtype-specific associations. Risk factor associations for triple-negative tumors 

were most distinct from other tumor subtypes. A key strength of this report is the large 

sample size, ~3-5 times larger than previously published reports [8, 15, 16], and wide range 

of exposures that allowed us to expand considerably on previous reports. Most notably, we 

investigated associations of time since last birth for women with different numbers of births 

on risk of breast cancer subtypes while accounting for other reproductive risk factors. 

We provide confirmatory evidence and additional insights for several subtype-specific 

risk factor associations. Earlier age at first birth and increasing number of births has been 

consistently associated with a lower risk for ER-positive disease [5, 6, 8, 18, 53, 54]. The 
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association with ER-negative disease has been less clear with studies suggesting no 

association [5, 18, 53, 54] or a higher risk [6, 8, 53]. Additionally, reports have shown a 

transient increase in breast cancer risk after a recent childbirth that reverts to a long-term 

protection [8, 11, 13-16]. A pooled analysis of premenopausal women of European descent 

showed that this transient increase was limited to ER-positive tumors, while the increased 

risk persisted for ER-negative tumors up to 35 years after birth [16]. We confirmed these 

patterns of risk associations with data that spanned beyond 55 years after last birth. 

Compared to nulliparous women, parous women are at transient increased risk of all intrinsic-

like subtypes peaking between 5-15 years after last birth for luminal-like tumors, lasting ~10 

years for biparous and multiparous women, and 20 years for uniparous women before risk 

decrease. Risk of triple–negative breast cancer after childbirth peaked immediately until <5 

years after birth, lasted ~30-35 years for uniparous and biparous women and 10-15 years for 

multiparous women with no decrease in risk even >55 years after most recent birth. We 

confirm that there is little protection from ER-negative tumors even decades after most recent 

birth [8, 16]. Together with two case-case analyses [55, 56], these studies provide evidence of 

heterogeneous associations between time since last birth and hormone receptor subtypes. Our 

results further reveal that it is primarily triple-negative and not HER2-enriched-like tumors 

that differ in these risk factor associations from other breast cancer subtypes. Additional 

studies in diverse populations are needed to clarify possible differences of these associations 

by race/ethnicity. 

Associations of breastfeeding and risk of ER-positive breast cancer has not been 

consistent and some studies suggest differences by race/ethnic groups [3, 8, 9, 17, 18]. Our 

study of women mostly of European descent showed no protection of ER-positive disease 

from breastfeeding, with a possible inverse association only for women with long 

breastfeeding duration (24 or more months). In contrast, breastfeeding for at least 6 months 
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was associated with a lower risk of triple negative disease. These findings are generally 

consistent with studies across race/ethnicity groups [3, 8, 9, 17, 18] and further support 

promotion of breastfeeding for at least 6 months to reduce breast cancer risk, particularly 

triple negative tumours that disproportionally affect women of African ancestry [57]. Given 

that breastfeeding initiation and duration is lower for African-American women compared to 

other races/ethnicities in the US [58], promotion of breastfeeding could help address breast 

cancer health disparities. 

Younger age at menarche was associated with increased risk of all subtypes in the 

current analysis, corroborating results from previous reports [2, 4, 6, 7, 10, 18]. Our results 

further indicate that older age at menopause was associated with increased risk of ER-

positive, ER-negative, luminal-like, and HER2-enriched-like but not triple-negative tumors. 

Older age at menopause has been previously reported to increase luminal-like [4, 6] and 

hormone receptor-positive tumors [7, 18]. 

Older age at first birth has been shown to increase risk of luminal A-like, luminal B-

like, ER-positive, and hormone receptor-positive tumors and not to be associated with triple-

negative, ER-negative, or hormone receptor-negative tumors [2, 4-7, 9]. However, none of 

these previous studies had accounted for time since last childbirth. Our data adds to the 

literature by providing clear evidence that older age at first birth is associated with decreased 

risk of triple-negative disease and ER-negative tumors after additionally accounting for time 

since last birth. The inclusion of time since last birth to the model attenuates the associations 

between age at first birth and luminal-like and ER-positive tumors while strengthening the 

inverse association with triple-negative disease and ER-negative tumors. 

 The possible biological mechanisms underpinning associations between reproductive 

history and breast cancer subtypes are unclear. Long-term protection of breast cells from 

carcinogenic transformation is partly hypothesized to be from terminal differentiation of the 
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terminal ductal lobular unit in the final trimester of pregnancy, as proposed [59]. That we do 

not see long-term protection from childbirth even decades after the last birth in women who 

develop triple-negative breast cancer mirrors those of a pooled analysis, where there was no 

protection from ER- breast cancers even ≥25 years after the last birth [8]. The authors then 

postulated that the mechanisms behind this long-term effect may be different from 

mechanisms operating for pregnancy-associated breast cancers. 

The potential biological mechanisms underlying the etiology of ER-negative breast 

cancer were recently described in a narrative review. These mechanisms include effects on 

progenitor cells in the mammary gland, involution following pregnancy, epigenetic 

reprogramming in the mammary gland following pregnancy hormone-induced differentiation 

and tissue remodeling, and aberrant DNA methylation of luminal progenitor genes [60]. 

We are unaware of other studies evaluating associations between time since last birth 

and risk of in situ breast cancer. Overall, we found evidence that patterns of association 

between other reproductive factors and in situ disease are similar to those for invasive ER-

positive tumors, in that increasing parity and increasing breastfeeding duration were observed 

to be associated with a decreased risk of in situ, in line with some studies [61-64] but not 

others [64, 65]. Our observations that increasing age at first birth and younger age at 

menarche were associated with increased risk of in situ tumors likewise corroborates results 

from some studies [61-63, 66] but not others [65-67] that were likely limited by small sample 

sizes. Age at menopause was not associated with in situ in our much larger study sample, 

while younger menopausal age has been previously reported to decrease in situ breast cancer 

risk [61-63, 66]. 

Our results further demonstrate that relationships between some reproductive risk 

factors and breast cancer subtype risk are modified by age. At younger ages, parity, age at 

first birth, and breastfeeding duration were more strongly associated with luminal A-like 
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tumors, with associations weakening with increasing age, whereas age at menarche was more 

likely to be strongly associated with triple-negative disease. That age modifies the association 

between parity and hormone receptor status-based and intrinsic-like subtypes has been 

previously suggested [8, 19] although not confirmed when using a less granular 

parameterization for age [6]. Age at first birth has been reported to be more strongly 

associated with ER-positive disease for younger women (aged <50 years) than older women 

[20]. Unlike our results, studies in African and African-American women reported that in 

women ≥50 years of age, breastfeeding duration was more strongly related to a decreased 

ER-positive risk [68] as well as decreased ER-negative risk [8], and older age at menarche to 

a decreased risk of ER-positive tumors [68]. 

From sensitivity analyses, associations between reproductive risk factors and 

intrinsic-like subtypes were similar across the two study designs except for age at menopause. 

Our study is limited by the categorization of tumor subtypes based on ER, PR, HER2, 

and grade. Up to 20% of IHC determinations of ER and PR may be inaccurate due to varying 

thresholds for positivity and interpretation criteria [69]. Another limitation is that we did not 

examine breastfeeding duration specific for each birth. There was also missing data on the 

reproductive factors (time since last birth: 42.2%, parity: 1.5%, age at first birth: 7.0%, 

breastfeeding duration: 41.5%, age at menarche: 6.2%, age at menopause: 13.5%), although a 

sensitivity analysis demonstrated that the effects of missing data on these associations was 

likely to be minimal. Our study sample predominantly included women of European ancestry 

(83.6%; Hispanic American 0.3%; African 4.5%; Asian subcontinent 0.1%; South-East Asian 

5.4%; Other 3.8%; Unknown 2.2%), so generalizing our findings to women of other 

ethnicities should be done with prudence. 

In conclusion, this large and comprehensive analysis using population-based data 

demonstrates marked differences in associations of reproductive history with triple-negative 
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breast cancer compared to the other intrinsic-like subtypes or in situ disease. These results are 

valuable in providing further evidence for the understanding of etiologic heterogeneity in 

breast carcinogenesis and could inform risk prediction and prevention strategies. 
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Table 1. Characteristics of risk factors among 23,353 breast cancer patients by intrinsic-like subtype and 71,072 controls from 31 population-

based studies. 

Characteristics 

Controls* 

No. (%) 

Luminal A-like† 

No. (%) 

Luminal B-like 

No. (%) 

Luminal B-

HER2-like 

No. (%) 

HER2-enriched-

like 

No. (%) 

Triple-negative 

No. (%) 

Total 71,072 (100) 12,405 (53.1) 2,832 (12.1) 3,088 (13.2) 1,498 (6.4) 3,530 (15.1) 

Age at diagnosis (median 

(IQR)) 58.0 (15.0) 62.0 (15.0) 60.0 (17.0) 59.0 (16.0) 57.0 (16.0) 56.0 (18.0) 

Parity 

 Nulliparous 

 1 

 2 

 ≥3 

 Missing 

8630 (12.1) 

11246 (15.8) 

26564 (37.4) 

23966 (33.7) 

666 (0.9) 

1750 (14.1) 

2153 (17.4) 

4464 (36.0) 

3933 (31.7) 

105 (0.9) 

429 (15.2) 

504 (17.8) 

1003 (35.4) 

867 (30.6) 

29 (1.0) 

479 (15.5) 

622 (20.1) 

1063 (34.4) 

890 (28.8) 

34 (1.1) 

212 (14.2) 

367 (24.5) 

495 (33.0) 

408 (27.2) 

16 (1.1) 

394 (11.2) 

703 (19.9) 

1288 (36.5) 

1122 (31.8) 

23 (0.7) 

Time since last birth 

 0-<5 years 

 5-<10 years 

 10-<15 years 

 15-<20 years 

 20-<25 years 

 25-<30 years 

 30-<35 years 

 35-<40 years 

 40-<45 years 

 45-<50 years 

 50-<55 years 

 ≥55 years 

 Missing 

888 (1.3) 

1279 (1.8) 

2022 (2.9) 

2987 (4.2) 

4042 (5.7) 

4441 (6.3) 

4795 (6.8) 

4892 (6.9) 

2937 (4.1) 

1361 (1.9) 

408 (0.6) 

87 (0.1) 

32303 (45.5) 

92 (0.7) 

228 (1.8) 

409 (3.3) 

591 (4.8) 

723 (5.8) 

865 (7.0) 

1119 (9.0) 

1135 (9.2) 

793 (6.4) 

418 (3.4) 

149 (1.2) 

65 (0.5) 

4068 (32.8) 

41 (1.5) 

71 (2.5) 

121 (4.2) 

134 (4.7) 

160 (5.7) 

183 (6.5) 

231 (8.2) 

250 (8.8) 

165 (5.8) 

83 (2.9) 

34 (1.2) 

16 (0.6) 

915 (32.3) 

68 (2.2) 

94 (3.0) 

129 (4.2) 

169 (5.5) 

199 (6.4) 

238 (7.7) 

292 (9.5) 

244 (7.9) 

158 (5.1) 

75 (2.4) 

29 (0.9) 

8 (0.3) 

906 (29.3) 

42 (2.8) 

45 (3.0) 

70 (4.7) 

91 (6.1) 

137 (9.2) 

138 (9.2) 

142 (9.5) 

114 (7.6) 

82 (5.5) 

33 (2.2) 

10 (0.7) 

7 (0.5) 

375 (25.0) 

104 (3.0) 

133 (3.8) 

175 (5.0) 

269 (7.6) 

329 (9.3) 

303 (8.6) 

314 (8.9) 

264 (7.5) 

189 (5.4) 

77 (2.2) 

33 (0.9) 

8 (0.2) 

938 (26.6) 

Age at first full-term birth 

 <20 years 

 20-<25 years 

 25-<30 years 

 ≥30 years 

 Missing 

6508 (9.2) 

23178 (32.6) 

18563 (26.1) 

9609 (13.5) 

4584 (6.5) 

1295 (10.4) 

4124 (33.2) 

3144 (25.3) 

1678 (13.5) 

414 (3.3) 

311 (11.0) 

910 (32.1) 

677 (23.9) 

394 (13.9) 

111 (3.9) 

299 (9.7) 

946 (30.6) 

806 (26.1) 

409 (13.2) 

149 (4.8) 

178 (11.9) 

469 (31.3) 

387 (25.8) 

199 (13.3) 

53 (3.5) 

578 (16.4) 

1231 (34.9) 

816 (23.1) 

361 (10.2) 

150 (4.3) 
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Breastfeeding duration 

 0 months 

 >0-6 months 

 >6-12 months 

 >12-24 months 

 >24 months 

 Missing 

 

7031 (9.9) 

10954 (15.4) 

5625 (7.9) 

4280 (6.0) 

2374 (3.3) 

32178 (45.3) 

 

1826 (14.7) 

2528 (20.4) 

1150 (9.3) 

1013 (8.2) 

500 (4.0) 

3638 (29.3) 

 

469 (16.6) 

559 (19.7) 

259 (9.2) 

219 (7.7) 

101 (3.6) 

796 (28.1) 

 

469 (15.2) 

702 (22.7) 

274 (8.9) 

224 (7.3) 

102 (3.3) 

838 (27.1) 

 

252 (16.8) 

311 (20.8) 

142 (9.5) 

91 (6.1) 

46 (3.1) 

444 (29.6) 

 

839 (23.8) 

739 (20.9) 

291 (8.2) 

232 (6.6) 

129 (3.7) 

906 (25.7) 

Age at menarche 

 ≤12 years 

 13 years 

 14 years 

 ≥15 years 

 Missing 

 

23572 (33.2) 

18005 (25.3) 

13151 (18.5) 

12041 (16.9) 

4303 (6.1) 

 

4469 (36.0) 

3406 (27.5) 

2093 (16.9) 

1971 (15.9) 

466 (3.8) 

 

1075 (38.0) 

742 (26.2) 

475 (16.8) 

431 (15.2) 

109 (3.9) 

 

1106 (35.8) 

799 (25.9) 

518 (16.8) 

504 (16.3) 

161 (5.2) 

 

510 (34.1) 

385 (25.7) 

265 (17.7) 

288 (19.2) 

50 (3.3) 

 

1427 (40.4) 

880 (24.9) 

549 (15.6) 

548 (15.5) 

126 (3.8) 

Age at menopause 

 <50 

 50-<54 

 ≥54 

 Missing 

19399 (27.3) 

13647 (19.2) 

5863 (8.3) 

10496 (14.8) 

4157 (33.5) 

3179 (25.6) 

1490 (12.0) 

989 (8.0) 

941 (33.2) 

617 (21.8) 

276 (9.8) 

245 (8.65) 

998 (32.3) 

638 (20.7) 

337 (10.9) 

219 (7.1) 

491 (32.8) 

342 (22.8) 

147 (9.8) 

80 (5.3) 

1144 (32.4) 

656 (18.6) 

281 (8.0) 

256 (7.3) 

* Control subjects in population-based studies were randomly selected from the same source population as the case patients and recruited during the same 

period of time. 

† Intrinsic-like subtype definitions: luminal A-like (ER-positive or PR-positive, HER2-negative, grade 1&2), luminal B-like (ER-positive or PR-positive, 

HER2-negative, grade 3), luminal B-HER2-like (ER-positive or PR-positive, HER2-positive, any grade), HER2-enriched-like (ER-negative, PR-negative, 

HER2-positive, any grade), and triple-negative (ER-negative, PR-negative, HER2-negative, any grade). 
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Table 2. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses* of associations between reproductive factors (time 

since last birth by number of births, age at first birth, breastfeeding duration, age at menarche, and age at menopause) and intrinsic-like subtypes. 

Risk factor Controls 

Intrinsic-like breast cancer subtype† 

Luminal A-like Luminal B-like Luminal B-HER2-like HER2-enriched-like Triple-negative 

Cases OR (95%CI) Cases OR (95%CI) Cases OR (95%CI) Cases OR (95%CI) Cases OR (95%CI) 

Time since last birth 

(years)            

Nulliparous 8630 1750 1.00 (Ref.) 429 1.00 (Ref.) 479 1.00 (Ref.) 212 1.00 (Ref.) 394 1.00 (Ref.) 

1 birth            

0-<5 381 31 

1.16 

(0.77 to 1.75) 12 

1.34 

(0.71 to 2.55) 21 

1.75 

(1.04 to 2.95) 12 

1.49 

(0.75 to 2.94) 31 

2.50 

(1.59 to 3.92) 

5<10 474 49 

1.04 

(0.75 to 1.46) 21 

1.47 

(0.88 to 2.44) 24 

1.20 

(0.74 to 1.94) 12 

1.02 

(0.52 to 1.98) 28 

1.72 

(1.10 to 2.70) 

10<15 755 107 

1.37 

(1.07 to 1.76) 33 

1.49 

(0.98 to 2.27) 41 

1.16 

(0.78 to 1.71) 25 

1.10 

(0.66 to 1.82) 44 

1.74 

(1.20 to 2.52) 

15<20 1125 151 

1.25 

(1.01 to 1.55) 34 

1.10 

(0.73 to 1.65) 66 

1.10 

(0.79 to 1.54) 42 

0.91 

(0.59 to 1.40) 83 

1.95 

(1.45 to 2.63) 

20<25 1387 192 

1.03 

(0.85 to 1.25) 47 

1.06 

(0.74 to 1.51) 77 

0.98 

(0.72 to 1.33) 57 

0.97 

(0.66 to 1.43) 105 

1.90 

(1.45 to 2.49) 

25<30 1427 274 

1.01 

(0.86 to 1.20) 56 

0.93 

(0.67 to 1.29) 72 

0.80 

(0.59 to 1.08) 56 

0.98 

(0.68 to 1.42) 92 

1.42 

(1.09 to 1.86) 

30<35 1504 368 

1.06 

(0.90 to 1.23) 76 

1.06 

(0.79 to 1.43) 84 

0.84 

(0.63 to 1.11) 51 

0.94 

(0.65 to 1.36) 94 

1.53 

(1.18 to 1.99) 

35<40 1564 369 

0.82 

(0.70 to 0.96) 79 

0.95 

(0.71 to 1.27) 81 

0.70 

(0.53 to 0.93) 50 

0.87 

(0.60 to 1.26) 88 

1.31 

(1.00 to 1.71) 

40<45 1073 241 

0.63 

(0.52 to 0.74) 60 

0.88 

(0.64 to 1.22) 62 

0.71 

(0.52 to 0.97) 28 

0.69 

(0.44 to 1.08) 60 

1.21 

(0.89 to 1.65) 

45<50 615 169 

0.62 

(0.50 to 0.76) 40 

0.91 

(0.62 to 1.32) 41 

0.76 

(0.52 to 1.09) 15 

0.62 

(0.35 to 1.10) 29 

0.97 

(0.64 to 1.47) 

50<55 203 68 

0.50 

(0.37 to 0.69) 13 

0.62 

(0.34 to 1.13) 16 

0.66 

(0.38 to 1.14) 3 

0.28 

(0.09 to 0.89) 17 

1.23 

(0.72 to 2.11) 

≥55 54 55 

0.82 

(0.54 to 1.26) 11 

1.16 

(0.58 to 2.34) 7 

0.85 

(0.37 to 1.94) 6 

1.79 

(0.72 to 4.44) 6 

1.34 

(0.55 to 3.26) 

2 births            

0-<5 264 37 

1.53 

(1.03 to 2.26) 18 

2.33 

(1.34 to 4.06) 30 

2.43 

(1.53 to 3.85) 12 

2.07 

(1.05 to 4.06) 39 

3.59 

(2.35 to 5.47) 

5<10 393 90 1.62 32 1.95 34 1.36 19 1.71 64 3.28 

D
ow

nloaded from
 https://academ

ic.oup.com
/jnci/advance-article/doi/10.1093/jnci/djac117/6611725 by U

niversity of N
orth C

arolina at C
hapel H

ill user on 14 July 2022



30 
 

(1.23 to 2.13) (1.26 to 3.02) (0.89 to 2.08) (0.98 to 2.99) (2.33 to 4.63) 

10<15 697 164 

1.15 

(0.93 to 1.42) 50 

1.32 

(0.92 to 1.91) 54 

0.97 

(0.68 to 1.38) 23 

0.92 

(0.56 to 1.53) 64 

1.50 

(1.09 to 2.07) 

15<20 967 271 

1.16 

(0.97 to 1.38) 57 

0.99 

(0.70 to 1.39) 59 

0.70 

(0.50 to 0.97) 24 

0.62 

(0.38 to 1.01) 108 

1.67 

(1.28 to 2.18) 

20<25 1461 340 

0.94 

(0.80 to 1.10) 64 

0.77 

(0.56 to 1.06) 74 

0.57 

(0.43 to 0.77) 45 

0.74 

(0.50 to 1.09) 124 

1.37 

(1.07 to 1.76) 

25<30 1610 341 

0.79 

(0.67 to 0.92) 75 

0.82 

(0.61 to 1.11) 101 

0.70 

(0.54 to 0.92) 49 

0.73 

(0.51 to 1.06) 115 

1.27 

(0.99 to 1.62) 

30<35 1680 420 

0.75 

(0.65 to 0.88) 77 

0.70 

(0.52 to 0.94) 106 

0.61 

(0.47 to 0.80) 58 

0.76 

(0.54 to 1.09) 132 

1.36 

(1.07 to 1.73) 

35<40 1725 397 

0.54 

(0.46 to 0.63) 98 

0.74 

(0.56 to 0.97) 96 

0.47 

(0.36 to 0.62) 34 

0.40 

(0.27 to 0.61) 82 

0.77 

(0.59 to 1.02) 

40<45 997 279 

0.50 

(0.42 to 0.59) 53 

0.57 

(0.41 to 0.80) 53 

0.38 

(0.27 to 0.53) 31 

0.57 

(0.37 to 0.88) 67 

0.94 

(0.70 to 1.27) 

45<50 379 127 

0.44 

(0.35 to 0.55) 20 

0.43 

(0.26 to 0.71) 17 

0.27 

(0.16 to 0.45) 12 

0.50 

(0.26 to 0.94) 30 

0.88 

(0.58 to 1.33) 

50<55 117 41 

0.34 

(0.23 to 0.49) 12 

0.60 

(0.32 to 1.13) 8 

0.32 

(0.15 to 0.68) 3 

0.36 

(0.11 to 1.17) 9 

0.75 

(0.37 to 1.53) 

≥55 20 6 

0.25 

(0.10 to 0.64) 3 

0.78 

(0.22 to 2.74) 0 . 1 

0.88 

(0.11 to 6.93) 1 

0.61 

(0.08 to 4.69) 

≥3 births            

0-<5 243 24 

1.11 

(0.70 to 1.76) 11 

1.65 

(0.85 to 3.19) 17 

1.46 

(0.84 to 2.53) 18 

3.45 

(1.93 to 6.18) 34 

3.12 

(2.02 to 4.83) 

5<10 412 89 

1.46 

(1.11 to 1.92) 18 

1.08 

(0.64 to 1.82) 36 

1.26 

(0.84 to 1.90) 14 

1.15 

(0.63 to 2.12) 41 

1.75 

(1.20 to 2.57) 

10<15 570 138 

1.21 

(0.97 to 1.52) 37 

1.22 

(0.82 to 1.81) 34 

0.73 

(0.49 to 1.09) 22 

1.13 

(0.68 to 1.87) 67 

1.74 

(1.27 to 2.39) 

15<20 895 169 

0.79 

(0.65 to 0.96) 43 

0.82 

(0.57 to 1.18) 44 

0.55 

(0.39 to 0.79) 25 

0.76 

(0.48 to 1.22) 78 

1.30 

(0.97 to 1.73) 

20<25 1194 191 

0.59 

(0.49 to 0.71) 49 

0.66 

(0.47 to 0.93) 48 

0.43 

(0.31 to 0.60) 35 

0.76 

(0.50 to 1.15) 100 

1.29 

(0.99 to 1.67) 

25<30 1404 250 

0.56 

(0.47 to 0.67) 52 

0.55 

(0.40 to 0.77) 65 

0.46 

(0.34 to 0.63) 33 

0.56 

(0.37 to 0.86) 96 

1.03 

(0.79 to 1.34) 

30<35 1611 331 

0.51 

(0.43 to 0.60) 78 

0.60 

(0.45 to 0.80) 102 

0.53 

(0.41 to 0.70) 33 

0.44 

(0.29 to 0.66) 88 

0.78 

(0.60 to 1.03) 

35<40 1603 369 

0.46 

(0.39 to 0.54) 73 

0.50 

(0.37 to 0.67) 67 

0.31 

(0.23 to 0.42) 30 

0.37 

(0.24 to 0.57) 94 

0.82 

(0.62 to 1.07) 
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40<45 867 273 

0.49 

(0.41 to 0.59) 52 

0.53 

(0.38 to 0.75) 43 

0.30 

(0.21 to 0.43) 23 

0.47 

(0.29 to 0.77) 62 

0.87 

(0.63 to 1.18) 

45<50 367 122 

0.36 

(0.28 to 0.46) 23 

0.42 

(0.26 to 0.67) 17 

0.23 

(0.14 to 0.39) 6 

0.27 

(0.12 to 0.64) 18 

0.54 

(0.32 to 0.90) 

50<55 88 40 

0.41 

(0.27 to 0.61) 9 

0.57 

(0.28 to 1.18) 5 

0.26 

(0.10 to 0.67) 4 

0.77 

(0.27 to 2.21) 7 

0.86 

(0.38 to 1.95) 

≥55 13 4 

0.22 

(0.07 to 0.71) 2 

0.75 

(0.16 to 3.45) 1 

0.33 

(0.04 to 2.63) 0 . 1 

0.94 

(0.12 to 7.51) 

Age at first birth‡ 

(years)            

<20 6508 1295 1.00 (Ref.) 311 1.00 (Ref.) 299 1.00 (Ref.) 178 1.00 (Ref.) 578 1.00 (Ref.) 

20-<25 23 178 4124 

0.94 

(0.87 to 1.01) 910 

0.93 

(0.81 to 1.07) 946 

0.97 

(0.85 to 1.12) 469 

0.91 

(0.76 to 1.10) 1231 

0.87 

(0.78 to 0.97) 

25-<30 18 563 3144 

0.99 

(0.92 to 1.07) 677 

0.93 

(0.80 to 1.08) 806 

1.02 

(0.88 to 1.18) 387 

0.91 

(0.75 to 1.11) 816 

0.76 

(0.67 to 0.87) 

≥30 9609 1678 

1.03 

(0.93 to 1.13) 394 

1.00 

(0.83 to 1.19) 409 

0.94 

(0.78 to 1.12) 199 

0.89 

(0.70 to 1.13) 361 

0.63 

(0.54 to 0.74) 

Breastfeeding duration‡ 

(months)            

0 7031 1826 1.00 (Ref.) 469 1.00 (Ref.) 469 1.00 (Ref.) 252 1.00 (Ref.) 839 1.00 (Ref.) 

>0-6 10 954 2528 

1.08 

(1.00 to 1.16) 559 

0.95 

(0.83 to 1.08) 702 

1.08 

(0.95 to 1.23) 311 

1.04 

(0.87 to 1.24) 739 

0.93 

(0.83 to 1.04) 

>6-12 5625 1150 

0.99 

(0.90 to 1.08) 259 

0.91 

(0.77 to 1.07) 274 

0.89 

(0.76 to 1.05) 142 

0.94 

(0.75 to 1.17) 291 

0.74 

(0.64 to 0.86) 

>12-24 4280 1013 

1.08 

(0.98 to 1.19) 219 

1.01 

(0.85 to 1.21) 224 

1.10 

(0.92 to 1.31) 91 

0.88 

(0.68 to 1.13) 232 

0.78 

(0.66 to 0.92) 

>24 2374 500 

0.92 

(0.81 to 1.04) 101 

0.81 

(0.64 to 1.02) 102 

0.92 

(0.73 to 1.17) 46 

0.77 

(0.55 to 1.08) 129 

0.72 

(0.58 to 0.88) 

Age at menarche (years)            

≥15 12 041 1971 1.00 (Ref.) 431 1.00 (Ref.) 504 1.00 (Ref.) 288 1.00 (Ref.) 548 1.00 (Ref.) 

14 13 151 2093 

1.11 

(1.03 to 1.19) 475 

1.09 

(0.95 to 1.25) 518 

1.10 

(0.97 to 1.25) 265 

1.08 

(0.91 to 1.28) 549 

1.06 

(0.94 to 1.21) 

13 18 005 3406 

1.18 

(1.10 to 1.26) 742 

1.13 

(0.99 to 1.27) 799 

1.17 

(1.04 to 1.32) 385 

1.15 

(0.98 to 1.35) 880 

1.12 

(1.00 to 1.26) 

≤12 23 572 4469 

1.27 

(1.20 to 1.35) 1075 

1.25 

(1.11 to 1.41) 1106 

1.24 

(1.11 to 1.39) 510 

1.16 

(0.99 to 1.36) 1427 

1.26 

(1.13 to 1.40) 
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Age at menopause 

(years)            

<50 19 399 4157 1.00 (Ref.) 941 1.00 (Ref.) 998 1.00 (Ref.) 491 1.00 (Ref.) 1144 1.00 (Ref.) 

50-<54 13 647 3179 

1.10 

(1.04 to 1.16) 617 

0.99 

(0.89 to 1.10) 638 

1.00 

(0.90 to 1.11) 342 

1.16 

(1.01 to 1.34) 656 

1.06 

(0.96 to 1.17) 

≥54 5863 1490 

1.17 

(1.09 to 1.25) 276 

1.00 

(0.87 to 1.15) 337 

1.21 

(1.06 to 1.38) 147 

1.19 

(0.98 to 1.44) 281 

1.06 

(0.92 to 1.21) 

* The multivariable model was additionally adjusted for reference age (age at diagnosis for cases, age at interview for controls) and study. 

† Intrinsic-like subtype definitions: luminal A-like (ER-positive or PR-positive, HER2-negative, grade 1&2), luminal B-like (ER-positive or PR-

positive, HER2-negative, grade 3), luminal B-HER2-like (ER-positive or PR-positive, HER2-positive, any grade), HER2-enriched-like (ER-

negative, PR-negative, HER2-positive, any grade), and triple-negative (ER-negative, PR-negative, HER2-negative, any grade). 

‡ Among parous women.  
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FIGURE LEGENDS 

 

Figure 1. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses of 

associations between reproductive factors (time since last birth by number of births, age at 

first birth, breastfeeding duration, age at menarche, and age at menopause) and intrinsic-like 

subtypes. The multivariable model was also adjusted for reference age (age at diagnosis for 

cases, age at interview for controls) and study. The error bars in the bottom panel represent 

the 95% confidence intervals. 

Figure 2. Odds ratios (ORs) and 95% confidence intervals (CIs)  for case-control analyses of 

association between number of births and luminal A-like and triple negative tumors 

according to reference age in 5-year categories (age at diagnosis for cases, age at interview 

for controls). The multivariable model was also adjusted for study. The error bars represent 

the 95% confidence intervals. 

Figure 3. Odds ratios (ORs) and 95% confidence intervals (CIs) for case-control analyses of 

associations between reproductive factors (time since last birth by number of births, age at 

first full-term birth, breastfeeding duration, age at menarche, and age at menopause) and ER 

subtypes and in situ tumors. The multivariable model was also adjusted for reference age (age 

at diagnosis for cases, age at interview for controls) and study. The error bars in the bottom 

panel represent the 95% confidence intervals. 
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