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Integration of clinical features and deep learning on pathology
for the prediction of breast cancer recurrence assays and risk of
recurrence
Frederick M. Howard 1, James Dolezal 1, Sara Kochanny1, Galina Khramtsova 1, Jasmine Vickery2, Andrew Srisuwananukorn 3,
Anna Woodard1,4, Nan Chen1, Rita Nanda 1, Charles M. Perou 5, Olufunmilayo I. Olopade 1, Dezheng Huo 6 and
Alexander T. Pearson 1✉

Gene expression-based recurrence assays are strongly recommended to guide the use of chemotherapy in hormone receptor-
positive, HER2-negative breast cancer, but such testing is expensive, can contribute to delays in care, and may not be available in
low-resource settings. Here, we describe the training and independent validation of a deep learning model that predicts recurrence
assay result and risk of recurrence using both digital histology and clinical risk factors. We demonstrate that this approach
outperforms an established clinical nomogram (area under the receiver operating characteristic curve of 0.83 versus 0.76 in an
external validation cohort, p= 0.0005) and can identify a subset of patients with excellent prognoses who may not need further
genomic testing.
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Breast cancer is the leading cause of cancer death for women
globally with an estimated 1.7 million cases diagnosed each year1.
There is an unmet global clinical need for accurate diagnosis and
treatment of breast cancer in response to the rising global burden
of disease. Breast cancer is a biologically heterogeneous disease
and genomic biomarkers have been developed to tailor ther-
apeutic decisions. Hormone receptor-positive (HR+ ) breast
cancer constitutes about 70% of newly diagnosed cases in the
United States2, although lower rates are generally seen outside of
Western / European populations3. Gene expression-based recur-
rence score assays, such as OncotypeDx (ODX), MammaPrint (MP),
Prosigna, and EndoPredict have been transformative for breast
cancer management and are strongly recommended by the
National Comprehensive Cancer Network4 and American Society
of Clinical Oncology (ASCO)5 guidelines to aid decisions regarding
the use of chemotherapy. However, genomic testing is costly6, is
underutilized in minorities and low resource settings7, and can
take weeks to perform leading to significant delays in care8.
Clinical nomograms have been developed to identify patients at
high risk of recurrence, but do not obviate the need for genomic
testing9. Compared to gene expression assays, hematoxylin and
eosin (H&E) stained pathology is readily available for all patients
with cancer worldwide. Deep learning (DL) is a recent advance in
the field of artificial intelligence (AI), which excels at quantitative
image analysis. From histology, DL models can identify high-level
image features, which in turn can be used to predict outcomes of
interest, such as tumor grade, gene expression, and genetic
alterations10–12. DL models trained on H&E pathology images have
been shown to predict breast cancer gene expression, including
molecular subtype as well as genes involved in cell cycle,
angiogenesis, and immune response pathways10,11,13. Therefore,
we hypothesized that a DL model incorporating digital pathology

can outperform existing clinical models for the prediction of gene
expression-based recurrence score assays.
To develop an accurate DL model for the prediction of

recurrence score, we used a framework of two consecutive
modules applied to image tiles extracted from the digital slide –
one to predict tumor likelihood and a second to predict
recurrence score results (Fig. 1a, b). The first DL module identified
tumor regions of interest versus surrounding normal tissue using
pathologist annotations from n= 1039 patients in The Cancer
Genome Atlas (TCGA, Supplementary Table 1), achieving an
average tile-level area under the receiver operating characteristic
curve (AUROC) of 0.85 when assessed using internal three-fold
cross-validation in TCGA. The second module was trained on
image tiles from within the pathologist-annotated malignant areas
from TCGA (n= 1039 patients) to predict the results of recurrence
assays (calculated using gene expression data). A DL pathology
recurrence score prediction was obtained by weighting the tile-
level recurrence score by tile-level tumor likelihood across all tiles
to provide a patient-level prediction. Furthermore, to assess if
integrating clinical data improves the discriminatory capacity of
our model, we developed a combined model incorporating the DL
pathologic prediction and a clinical predictor of high ODX scores.
A logistic regression was fit within TCGA-BRCA using our DL model
prediction and ODX prediction from a previously published clinical
nomogram developed by researchers from the University of
Tennessee9. This clinical nomogram incorporates patient age,
tumor size, progesterone receptor (PR) status, tumor grade, and
histologic subtype. We tested this approach in the HR+ /HER2-
subset of our training cohort from TCGA (n= 535, Supplementary
Table 1), reflective of the population where ODX is performed.
Average AUROC for the prediction of high ODX score was 0.797
(95% CI 0.680–0.901) for the DL pathology model, 0.779 (95% CI
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0.645–0.889) for the clinical nomogram, and 0.814 (95% CI
0.709–0.901) for the combined model (Fig. 1c).
To validate these findings in an external cohort, we assessed the

performance of the DL pathologic and combined models (frozen
after training in TCGA) in n= 427 patients from the University of
Chicago Medical Center (UCMC) who had ODX testing performed
and pathologic samples available (Supplementary Table 2).
AUROC for prediction of high ODX score of the combined model
was 0.828 (95% CI 0.773–0.883), which was significantly higher
than the clinical nomogram (AUROC 0.764, 95% CI 0.697–0.832,
p= 0.0005) and a trend towards improvement over the DL
pathologic model (AUROC 0.798, 95% CI 0.746–0.850, p= 0.155,
Fig. 1d, Supplementary Table 3). Area under the precision-recall
curve (AUPRC) was consistently highest for the combined model
and exceeded random chance in all cases (Supplementary Table
3). The Spearman’s rank correlation coefficient between model
predictions and numeric ODX score was consistently highest in
the combined model (Supplementary Table 4, Supplementary Fig.
1). Performance was similar in Black and White patient subgroups
(other racial/ethnic groups not assessed due to small sample size),
with the combined model outperforming the clinical model in
both subgroups (Supplementary Table 5). AUROCs remained
highest with the combined model in several sensitivity analyses
(Supplementary Table 6), however, the pathologic and thus the

combined model performance declined when restricting training
to HR+ /HER2- patients in TCGA or when training on the smaller
UCMC dataset, perhaps due to reduced training dataset size.
As ODX was initially developed to predict prognosis in patients

treated with endocrine therapy alone, we evaluated the prog-
nostic accuracy of models in patients treated without chemother-
apy at UCMC (n= 322). We assessed prognostic accuracy using
Cox regression, incorporating predictions from each model as a
single variable. Each model was significantly associated with
recurrence-free interval (RFI, Table 1), but the Harrell’s concor-
dance index (C-index)14 was highest for the combined model (HR
2.04 per standard deviation, 95% CI 1.18–3.53, p= 0.011, C-index
0.743), nearly reaching the C-index of the actual ODX score (0.776).
No model was associated with RFI among patients receiving
chemotherapy, which may be due to confounding variables
influencing treatment decisions and the use of ODX to select
patients for treatment. Conversely, in TCGA, prognostic accuracy
was highest for the clinical nomogram (C-Index 0.644, Supple-
mentary Table 7), although no treatment information was
available, and prognosis in this cohort was worse than expected
for HR+ /HER2- breast cancer receiving modern treatment regi-
mens (Supplementary Fig. 2)15,16. Finally, we compared the ability
of the three models to perform as highly-sensitive rule-out tests,
to identify patients who do not require ODX testing. We selected a
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Fig. 1 Overview of model architecture and results. a Xception-based deep learning models were trained on 1,039 patients from TCGA to
allow for unsupervised predictions on external data. One model was trained to identify image tiles within pathologist annotation of tumor
versus background image tiles (b, middle). The second model was trained to predict a research version of the 21-gene recurrence score
calculated from gene expression data from the annotated tumor regions from TCGA (b, bottom). Finally, a combined clinical / pathologic
model was developed by fitting a logistic regression to deep learning model predictions and the University of Tennessee clinical nomogram
predictions. c Average patient-level AUROC for prediction of high-risk recurrence score in HR+ /HER2- patients from TCGA on three-fold cross-
validation (n= 535); the combined model AUROC was significantly higher than the clinical nomogram in two of three folds. d Patient-level
AUROC for prediction of high-risk recurrence score in the UCMC cohort (n= 427); the combined model AUROC was significantly higher that
the clinical nomogram in this cohort. e, f Kaplan-Meier curves illustrate recurrence-free interval in patients from the UCMC validation cohort
predicted to have a high-risk Oncotype score using high-sensitivity thresholds (derived from TCGA) for each model. TCGAThe Cancer Genome
Atlas. AUC / AUROC Area Under the Receiver Operating Characteristic Curve, HR Hormone Receptor, UCMC University of Chicago Medical
Center.
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threshold for each model that achieved a sensitivity of 95% in the
TCGA HR+ /HER2- cohort (Supplementary Table 8), and then
applied that threshold to UCMC patients. The true sensitivities were
similar in the UCMC cohort, but the specificity was highest for the
combined model (sensitivity 87.3%, specificity 55.2%) than for the
Tennessee nomogram (sensitivity 88.6%, specificity 22.1%). Addi-
tionally, RFI was prolonged in patients deemed low-risk by the
combined model using the high-sensitivity cut-off in both the TCGA
(Supplementary Fig. 3) and UCMC validation cohort (Fig. 1e, f).
We performed a similar analysis to evaluate DL as a predictor of

high-risk MP scores. As there is not a widely used nomogram for
high-risk MP prediction, we developed a clinical predictor from
the National Cancer Data Base (NCDB). The combined model had a
trend towards higher accuracy in the prediction of high-risk MP
scores (AUROC 0.759, 95% CI 0.656–0.861) than a clinical model
(AUROC 0.741, 95% CI 0.634–0.849, p= 0.65) or a pathologic
model (AUROC 0.739, 95% CI 0.633–0.846, p= 0.56) in a validation
cohort of n= 88 UCMC patients (Supplementary Fig. 4, Supple-
mentary Table 3). There was only one recurrence in the MP
subgroup at UCMC, so prognostic comparisons to actual MP
scores were not performed.
Finally, to help understand the nature of predictions made by

this DL model, study pathologists independently reviewed
heatmaps of the recurrence score module from 20 slides each
with high-risk and low-risk ODX predictions in the UCMC cohort.
Notable features identified by heatmaps included necrosis (both
comedonecrosis and coagulative necrosis), lymphovascular inva-
sion, high-grade nuclei, sheet-like growth of densely packed
tumor nests, and infiltrative borders (Supplementary Fig. 5). The
impact of tiles with pure necrosis and no visible tumor on model
predictions was attuned by the fact that such tiles were also
predicted to be non-cancer by our tumor likelihood model;
however, tiles of tumor adjacent to necrosis may contribute
predictions of high risk (Supplementary Fig. 6). To further
demonstrate the correlation of these features with model
predictions, we compared predictions in out-of-sample cases in
the TCGA cohort with and without selecting previously annotated
histologic features. We found that pathologic prediction of high-
risk ODX was associated with higher grade (p= 1.76 × 10−31),
lymphovascular invasion (p= 0.012), and necrosis
(p= 1.52 ×10−16, Supplementary Table 9).

There are several prior attempts to use DL on pathologic images
to improve the prediction of ODX scores. Two studies by Romo-
Bucheli et al demonstrated that automated tubule nuclei
quantification17 and mitotic activity18 can differentiate high versus
low ODX scores; however, the reported accuracy analyses of these
metrics excluded intermediate scores of 18–29 – limiting clinical
applicability. Quantitative nuclear histomorphic features were
found to have an AUROC of 0.65 in the identification of high ODX
cases19 and a proprietary tile-based convolutional neural network
model that deciphers cell, structure, and tissue-based features
from image tiles was found to have an AUROC of 0.75 for
prediction of high ODX20. The performance of our pathologic
(AUROC of 0.80) and combined models (AUROC of 0.83) in the
validation cohort may represent an advance over these
approaches. DL models have been deployed incorporating clinical
and immunohistochemical features scored by pathologists21–23,
whereas our model only relies on universally available clinical
parameters and H&E slide images. Strengths of this study include
the consistency of performance for ODX prediction in both
training and validation subsets, as well as in racial/ethnic
subgroups (which is essential given potential inequities in DL24).
Additionally, the correlation of predictions with known high-risk
histologic factors, including grade, necrosis, and lymphovascular
invasion suggest that biologically relevant features are identified
by this weakly supervised DL pathologic approach. The high-
sensitivity rule-out cutoff of the combined model identified a high
proportion of patients as low risk in both datasets, and this cutoff
was consistently prognostic for recurrence. However, there are
limitations to our approach to model development. First, TCGA
does not have clinical-grade recurrence assay results available,
and a pathologic model trained and validated on clinical-grade
assay results in this fashion may improve performance. Hyper-
parameter tuning in the TCGA cohort could lead to artificially
inflated performance on internal validation, although reassuringly
performance was preserved in the UCMC cohort. Our validation
dataset had a low number of recurrence events, and the majority
of survival events were from non-cancer mortality; thus larger
sample sizes are needed to confirm the clinical utility of our
approach. No model was prognostic in patients receiving
chemotherapy and the prognostic value of the DL model was
lower in TCGA. Although confounding factors may contribute to

Table 1. Prognostic Value of Models in the Validation Cohort.

Endpoint Model C-Index, No CT Hazard Ratio, No CT (95% CI) z-statistic p value C-Index, CT Hazard Ratio, CT (95% CI) z-statistic p value

RFI Pathologic 0.707 1.72 (1.01–2.94) 1.98 0.048 0.5 0.9 (0.38–2.15) −0.23 0.819

Clinical 0.679 1.75 (1.09–2.81) 2.3 0.022 0.593 1.2 (0.56–2.57) 0.48 0.631

Combined 0.743 1.55 (1.13–2.12) 2.74 0.006 0.513 1.02 (0.43–2.44) 0.05 0.962

OncotypeDx 0.776 1.85 (1.32–2.59) 3.59 0.0003 0.628 1.43 (0.72–2.82) 1.03 0.305

RFS Pathologic 0.561 1.1 (0.73–1.65) 0.46 0.646 0.532 0.82 (0.37–1.86) −0.46 0.642

Clinical 0.569 1.13 (0.76–1.68) 0.59 0.552 0.595 1.2 (0.59–2.43) 0.51 0.607

Combined 0.574 1.17 (0.84–1.63) 0.93 0.354 0.498 0.95 (0.41–2.21) −0.12 0.903

OncotypeDx 0.647 1.45 (1.05–1.99) 2.26 0.024 0.636 1.4 (0.74–2.66) 1.02 0.306

OS Pathologic 0.533 0.83 (0.49–1.4) −0.7 0.484 0.529 0.78 (0.31–1.97) −0.53 0.596

Clinical 0.537 1.08 (0.67–1.74) 0.31 0.758 0.642 1.28 (0.56–2.92) 0.6 0.551

Combined 0.489 1.06 (0.67–1.68) 0.23 0.816 0.481 0.93 (0.34–2.55) −0.15 0.882

OncotypeDx 0.581 1.33 (0.87–2.04) 1.33 0.183 0.694 1.41 (0.66–3.05) 0.88 0.377

UCMC University of Chicago Medical Center, CT Chemotherapy, CI Confidence Interval, SD Standard Deviation, C-Index Concordance Index, RFI Recurrence-free
Interval, RFS Recurrence-free Survival, OS Overall Survival.
Results are listed for Cox proportional hazard models using the specified variable as the only input, for the subgroups of patients treated with (n= 103) or
without chemotherapy (n= 322) in the UCMC validation cohort. Hazard ratios are computed per standard deviation of input data given the different scales of
the various models, and results are given for the deep learning pathologic, clinical nomogram, and combined model along with OncotypeDx score as a gold
standard comparator. Recurrence-free interval includes any recurrence events, whereas recurrence-free survival includes recurrence or survival events, and
overall survival only includes survival events.
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these findings, this further raises the need for confirmation of the
prognostic value of the combined clinical / pathologic model. The
magnitude of improvement of this deep learning approach over
existing clinical models is small, but perhaps with additional
training and refinement this approach can reach clinical-grade
accuracy. Finally, it must be recognized that although the reported
DL model was more accurate in identifying high-risk cases than a
clinical nomogram, the true OncotypeDx recurrence assay had
greater prognostic value than all evaluated models and remains
the gold standard for treatment decisions in this population.
Understanding of the genomic features underlying cancer

recurrence and chemotherapy benefit has evolved and genomic
testing is now a routine part of breast cancer care. ASCO recently
added the development and integration of deep learning
technology into cancer research as a priority in 202125, as artificial
intelligence has the potential to rectify disparities and supplement
or improve genomic testing. This study illustrates the develop-
ment of an effective DL biomarker that improves on existing
clinical predictors of low-recurrence risk tumors. ODX testing is
estimated to grow in cost to $231 million annually in the USA6,
and using a highly sensitive cutoff as described above could be
used to limit testing in patients who are very unlikely to have
positive results. Furthermore, given the heterogeneity of breast
tumors, this methodology could be applied to multiple pathologic
samples in a single patient to potentially increase confidence in
results. With training on larger datasets with clinical-grade
recurrence assays available to optimally tune thresholds, this
approach could improve the speed at which treatment decisions
are made due to the time-consuming nature of genomic testing,
reduce the cost of care, and be utilized worldwide where genomic
assays are not available.

METHODS
Ethics statement
All experiments were conducted in accordance with the Declara-
tion of Helsinki and the study was approved by the University of
Chicago Institutional Review Board, IRB 22-0707. For model
training, patients were included from the TCGA breast cancer
cohort (BRCA)26. For validation, anonymized archival tissue
samples were retrieved from the University of Chicago from
January 1st 2006, through December 21st 2020, where recurrence
score results were available. Informed consent for this study was
waived, as patients had previously consented to the secondary
use of their biospecimens.

Model Development
First, an automated tumor detection module was trained to
distinguish breast tumor from background tissue in digitally
scanned H&E slides. From TCGA, 1133 slides were reviewed, and
1,106 from 1,046 patients had acceptable quality tumor-rich
regions identified on pathologist review. Seven slides had
encoding errors preventing processing in our pipeline, leaving
us with a cohort of 1,099 slides from 1039 patients, which were
annotated manually by study pathologists to distinguish tumor
from surrounding stroma. Tessellated image tiles were extracted
from within areas of tumor with an edge length of 302 microns
and downscaled to a width of 299 pixels, consistent with an
optical resolution of 10x. Tile extraction and DL model training
was performed with the Slideflow pipeline27, using an Xception28

convolutional neural network backbone pretrained on ImageNet
and with all layers fine-tuned during training, with a variable
number of fully connected hidden layers prior to outcome
prediction. The tumor likelihood module was trained with
hyperparameters as listed in Supplementary Table 10 to
distinguish tiles originating from within the tumor annotation
from those outside the annotation. Model performance was

assessed with average accuracy over three cross-fold validation,
and a separate model was trained on the entire dataset for
prediction on external patients. The flow of data used for
hyperparameter optimization, model training, and validation is
illustrated in Supplementary Fig. 7.
Next, a separate DL module was trained to predict recurrence

score from tumor image tiles extracted from the pathologist-
annotated region of interest. As the clinically validated multigene
recurrence assay results are not available from TCGA, “research-
based” versions of ODX and MP were calculated using upper
quantile normalized star-salmon gene-level expression data from
TCGA. Sequencing data was log (base 2) transformed and row
median centered and column standardized across TCGA-BRCA.
Statistical formulas from the published development of Oncoty-
peDx29 and MammaPrint30,31 were then applied to the mRNA
expression data to calculate research-based recurrence scores.
This module is trained in a weakly supervised fashion, with the

results of the patient-level mRNA assay assigned to each tumor
tile. To determine a threshold for high-risk “research-based” ODX
score, the 15th percentile result of HR+ /HER2- patients in TCGA
was used, as this is the percentile of patients with ODX score of 26
or higher in the National Cancer Database9. TCGA model training
was not restricted to HR+ /HER2- patients to enrich for samples
with high-risk ODX predictions, but internal validation in TCGA
was performed in the HR+ /HER2- subset. In the UCMC, we used
standard high-risk cutpoints of ODX score of 26 or higher, and MP
score of lower than 0. Hyperparameters for these models were
chosen with Bayesian optimization of cross-validated tile level
AUROC, run over 50 iterations (Supplementary Table 10,
Supplementary Fig. 8). Two sets of three cross folds were used
for optimization, and although samples from TCGA were H&E
stained at a single site, folds were generated with site preserva-
tion32 to maximize generalizability given prior reports of site-
specific batch effect present in TCGA. Patient-level predictions
were calculated by weighting the average of tile-level predictions
from this recurrence score prediction module according to a tile’s
likelihood of tumor from the first module. Thus, all extracted tiles
(after grayspace filtering) contributed to model predictions.
For clinical prediction of recurrence the University of Tennessee

Nomogram9 was computed for each patient in TCGA; grade is not
available in the original TCGA annotations but has been assessed
and reported in prior work33. Precise tumor size was not provided
in TCGA but was estimated from tumor stage group, and mean
imputation was used in TCGA for three cases where progesterone
receptor status was not available for nomogram estimation – no
imputation was needed for nomogram calculation in the UCMC
dataset. Finally, logistic regression models were fit using the out-
of-sample prediction from the pathologic model combined with
the prediction from the clinical nomogram, and then validated in
held-out data from TCGA. The coefficients of the logistic
regressions fit in TCGA were averaged to define the model used
for external validation. Thresholds for computing model sensitivity
were determined from TCGA (using interpolation to achieve an
exact estimated sensitivity of 95%) and applied to the validation
dataset from UCMC.
Development of the MP prediction model proceeded in a

similar fashion with a few key differences. As no widely used
clinical model was available, we developed a clinical predictor
from n= 6,938 nonmetastatic HR+ /HER2- patients from NCDB
who were diagnosed with breast cancer between 2010 and 2017
and had MP testing results available. We used sequential forward
feature selection to identify features that improved the AUROC for
MP prediction in a logistic regression with 10-fold cross-validation,
ultimately identifying grade, tumor size, PR status, lymphovascular
invasion, ductal, mucinous, metaplastic, or medullary histology,
and Black or Asian race for inclusion. A logistic regression
incorporating these features was fit on all available data and
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used for prediction. We used the same optimized hyperpara-
meters from ODX prediction for our DL pathologic MP model.

Statistical analysis
Internal validation of model accuracy for recurrence score prediction
in TCGA was estimated by averaging patient-level AUROC and
AUPRC over three-fold site-preserved cross-validation, and 1000x
bootstrapping for confidence interval estimation. External validation
was performed with single fixed models generated from all TCGA
data, using Delong’s method for statistical comparison of AUROCs34.
The prognostic accuracy of models for RFI was assessed with the
Wald test in univariable Cox models. Two-sided t-tests were
performed to compare DL pathologic model predictions between
patients with or without select pathologic features. All statistical
analysis was performed in Python 3.8, Lifelines 0.27.0, and Scipy 1.8.0
and performed at the α= 0.05 significance level. Given the limited
number of statistical tests, performed in different subsets of patients,
and the exploratory nature of this work, correction for multiple
hypothesis testing was not performed.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data from TCGA including digital histology and the clinical and genetic annotations
used are available from https://portal.gdc.cancer.gov/ and https://cbioportal.org, and
the annotations used for grade, necrosis, and lymphovascular invasion are from
previously published work33. The NCDB PUF is a HIPAA-compliant data file, which is
made available to investigators from CoC-accredited cancer programs who complete
an application process. Trained models evaluated in this paper, anonymized patient
annotations, and the complete set of tile images used for model validation can be
obtained at https://doi.org/10.5281/zenodo.7490381.

CODE AVAILABILITY
Code utilized in model development and assessment is available at https://
github.com/fmhoward/DLRS.
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