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In The Cancer Genome Atlas (TCGA) data set, there are many inter-
esting nonlinear dependencies between pairs of genes that reveal important
relationships and subtypes of cancer. Such genomic data analysis requires
a rapid, powerful, and interpretable detection process, especially in a high-
dimensional environment. We study the nonlinear patterns among the expres-
sion of pairs of genes from TCGA using a powerful tool called binary expan-
sion testing. We find many nonlinear patterns, some of which are driven by
known cancer subtypes, some of which are novel.

1. Introduction. A leading cause of death in the world is cancer. A lot of cancer re-
search is currently analyzing larger and larger data sets. In this paper we focus on The Cancer
Genome Atlas (TCGA) (2012), which is a particularly important and comprehensive data set
to study cancer biology and genomics. It is a publicly available genomics data resource that
seeks to understand several types of cancer by collecting multiple diverse data over many
people. In that set an important data type is gene expression and, more specifically, RNA-seq
data. A biologically useful task of modern genomics data analysis is detecting the dependency
patterns among gene expression. Conventional approaches to dependency, such as Pearson’s,
Spearman’s rank, or Kendall’s rank correlation coefficients target linear dependence. The fo-
cus of this paper is a much deeper investigation of nonlinear dependence in TCGA breast
cancer data. The dependence of two such genes was an example shown in Zhang (2019).
Here we carry the applied analysis much further by a detailed study of all pairs of genes.
Furthermore, we take the analysis even deeper by studying gene dependence within subtypes
as well. We show nonlinear dependence plays a much stronger role than previously imag-
ined by finding 167,173 interesting nonlinear dependent pairs in the full data set. As seen in
Table 4 below, only 36.3% of these significant pairs were discovered by using the classical
Hoeffding’s D statistic.

An example of the expression of two genes with strong and important nonlinear depen-
dence that is not discoverable by linear methods is shown in the left panel of Figure 1. That
is a scatter plot of expression for the genes BCL11A and F2RL2. For this pair of genes, the
Pearson correlation coefficient is −0.0069, Spearman’s ρ is 0.088, and Kendall’s τ is 0.085.
These correlation coefficients are all very close to zero, suggesting no linear correlation be-
tween these two genes, as is also visually apparent. However, there is clear nonlinear depen-
dence. This dependence is explained from a biological viewpoint by labeling with commonly
used breast cancer subtypes, which were originally discovered by clustering some carefully
selected genes in Perou et al. (2000). As shown by the colors and symbols in Figure 1, the
decreasing part on the right (suggesting negative correlation) is mainly caused by the basal
( ) subtype observations. For gene network considerations, the increasing part on the left,
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FIG. 1. Left: The scatter plot comparing expression of two genes in TCGA breast cancer data in the normalized
log count scale. Right: The scatter plot of the same two genes using the copula transformation with the nonlinear
dependence pattern from BET. Strong statistical significance is indicated by the BET Z-statistic of 12.56. These
pairwise genes exhibit an interesting nonlinear dependence pattern, which is explained by showing the breast
cancer subtypes.

driven by the Luminal A ( ) and Luminal B ( ) subtypes, suggest a positive correlation.
This important biological refinement of network analysis is unavailable from classical gene
network approaches based on conventional correlation measures. This nonlinear dependence
pattern has been discovered by binary expansion testing (BET) proposed by Zhang (2019).
The right panel of Figure 1 is the corresponding BET diagnostic plot explained in Section 2.1.

The data set studied in this paper consists of gene expression features of TCGA Lobu-
lar Freeze breast cancer data from Ciriello et al. (2015), containing 16,615 genes. Note that
the total number of pairwise comparisons of genes is

(16,615
2

) = 138,020,805. Human visu-
alization of all of these scatter plots is intractable (Sun and Zhao (2014)). An interesting
early approach to this is Tukey’s scagnostics (Wilkinson, Anand and Grossman (2005)). The
large number of pairs motivates a computationally efficient method for investigating pairwise
dependence. Gene expression studies have revealed a large number of linear dependencies
between genes. In particular, in our BET analysis we discover 10,110,787 pairs of (statis-
tically significant using Bonferroni multiple comparison adjustment) dependencies between
genes. A large number of these are well understood. This paper takes genomics in a new
direction by investigating nonlinear dependencies of the type shown in Figure 1.

There are several current approaches to studying nonlinear dependence. An early measure
was Hoeffding’s D (Hoeffding (1948)), which is not particularly powerful in the direction of
nonlinear dependence (Zhang (2019)). More recently, Székely et al. have proposed the more
powerful (in the direction of nonlinear dependence) method of distance correlation (Székely
and Rizzo (2013), Székely, Rizzo and Bakirov (2007)). Another more powerful approach is
the k-nearest neighbor mutual information (KNN-MI) algorithm (Kinney and Atwal (2014),
Kraskov, Stögbauer and Grassberger (2004)), which focuses on mixtures of Gaussian dis-
tributions. While these methods are beneficial for discovering nonlinear dependence, they
are less suitable for extensive genomic studies for three reasons. First, they are not efficient
for large-scale computation problems such as TCGA data (tens of thousands of genes and
hundreds of samples). Second, they still face some power loss in the direction of nonlinear
dependence, as noted using simulation studies in Section 6 of Zhang (2019). Third, there is
less immediate interpretation of the type that is available from BET.

To demonstrate the relatively slow execution time needed for the three methods above,
we compare their calculation speed with BET. The running time for testing all pairs of a
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TABLE 1
The running time of the pairwise comparison of 100 genes. The more powerful nonlinear

detection methods are orders of magnitude slower than BET

Algorithms BET Hoeffding’s D Distance correlation KNN mutual information

Times 8.96 secs 24.05 secs 17.51 mins 4.91 hours

randomly selected set of 100 genes is shown in Table 1. We use the default setting for each
algorithm.

Table 1 shows that BET is around three times faster than Hoeffding’s D, which has less
power in the direction of nonlinear dependence, as seen in Section 3.2. It also shows that
BET provides computational speed that is several orders of magnitude faster than either
distance correlation or KNN mutual information in the context of dependence testing of
high-dimensional data such as TCGA. Furthermore, nonlinear dependence can arise in many
forms. As mentioned above, another advantage of BET is that it gives additional information
on the form of nonlinear dependence, as illustrated in Figure 2.

FIG. 2. The first nine low-resolution dyadic binary interaction designs (BIDs) used by BET and one example pair
of expression data shown for every BID, with S indicating the difference of counts in white and shade regions. Each
BID is aimed at detecting a particular dependence relationship between two [0,1] uniform random variables. Size
of S indicates the strength of nonlinear dependence in each BID. A number of biologically relevant patterns are
shown.
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This paper is organized as follows. Section 2 describes the main idea of the binary expan-
sion testing (BET) algorithm. Section 3 details the BET analysis of TCGA data set, revealing
several interesting nonlinear patterns. Section 4 studies the validation of some surprising
TCGA results using an independent genomics data set. Section 5 concludes the article.

2. Binary expansion testing for nonlinear dependency detection. BET is a recent and
innovative approach for dependence testing that is powerful for detecting pairwise nonlinear
dependence. Furthermore, it provides a computationally fast investigation process for large-
scale data sets, as shown in Table 1. Finally, BET gives a clear interpretation for some specific
nonlinear dependence patterns. These patterns are formally introduced in Section 2.1. The
BET algorithm and inference are given in Section 2.2.

2.1. BET dependence patterns. The first step of BET is the copula transform of the bi-
variate distribution to the unit square [0,1]2 using a marginal probability integral transforma-
tion of each variable in the pair, as detailed in Section 2.2. The key idea of BET is to partition
the unit square into different patterns that indicate interesting types of dependence in terms
of counts, that is, densities of observations, in different regions. For fast computation these
patterns are dyadic in nature. The first few of these are shown in Figure 2, where unions of
shade blocks represent one region and white blocks are the alternative. Each partition pattern
is called a binary interaction design (BID) by Zhang (2019). In our genomics data analy-
sis, we consider the nine dependence BIDs shown in Figure 2. Each BID corresponds to
one BET dependence pattern. If there is no dependence between U and V , the observations
are randomly distributed in [0,1]2. Dependence patterns are reflected by significant differ-
ences between these shade and white region counts of points (density of observations). For
each form of BID, the difference is called S (the symmetry statistic). These counts are tested
against the null hypothesis of no difference between them. The value of S is given for each
BID in Figure 2. Notice that S is positive if the white part is denser than the shade and neg-
ative otherwise. For example, the white region in the upper-left panel of Figure 2 (the label
A1B1 of that BID will be explained later) contains more points and captures a monotone
upward dependence, which corresponds to the large positive S = 745. Had the linear depen-
dence in the data been downward, there would have been greater density in the shade region,
and S would be negative. An example where the shade region is denser appears in the BID
in the upper-right panel, where S = −395. Each dependence pattern in Figure 2 is illustrated
using a pair of genes that strongly exhibit the corresponding BID, particularly the pair with
the maximal absolute value of S.

Figure 2 shows that BET captures several different nonlinear relationships for strongly
dependent pairs of genes. Specific genes in these pairs are listed in Table 2, where Gene 1 is on

TABLE 2
Gene names for each pair in Figure 2

Location Gene 1 (U ) Gene 2 (V )

Top-left C17orf81 C17orf61
Top-middle RPL24 RPL9
Top-right JAM3 ANKS6
Middle-left RPL9 RPL32
Center PRR15 CA12
Middle-right CDH5 ZNF883
Bottom-left ANKS6 DCN
Bottom-middle CT62 FAM174A
Bottom-right PROSC ASH2L
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the horizontal axis and Gene 2 is on the vertical axis. As noted above, the symmetry statistic S

for each BID is far from 0, indicating that strong dependence exists. For example, the middle-
left panel highlights a surprising bimodal pattern that we will discuss in detail in Section 3.6
and 4.2. The bottom-left panel indicates dependence roughly following a downward opening
parabola, which is captured by a high density in the shade region with corresponding negative
S value. Left and right opening parabolas are captured by the BID in the upper-right, where
this pair of genes has a leftward opening parabola. In contrast, the bottom-right panel looks
quite different. It is fairly close to linear dependence but clearly not bivariate normal. There
are unusual concentrations in the upper right and the lower left.

The prevalence of these mixture patterns and some of the others frequently turns out to
be a consequence of known breast cancer subtypes. In particular, basal is known to be very
distinct. The dependencies highlighted by a number of different BIDs in Figure 2 are clearly
explained by the separation between basal ( ) and the other subtypes. The two mixture pat-
terns, in the bottom-left and the top-right BIDs, demonstrate how the mixture of basal and
other subtypes can drive such patterns. The great difference between the basal subtype and
the rest also drives the dependency patterns in the center (A2B2) and the bottom-middle
(A1A2B2) BIDs. It is important to remember that several BIDs can respond (i.e., have a sig-
nificant absolute value of S) to a given dependence pattern in the data. However, we made
the computational choice of only keeping the largest absolute S value for each pair of genes.
Hence, the top 200 most significant genes, shown in the graphs in Figures 6 and 8, may
miss some overlapping pairs of genes. Potential future work of interest would be to study the
impact of this choice.

From classical statistical viewpoints, such as those based on sparsity and correlation anal-
ysis of dependence, this data set has a perhaps surprising amount of nonlinear dependence,
as seen from the numbers of significant gene pairs shown in Figure 4.

2.2. BET algorithm and inference. Next, we formally introduce the testing procedure
and notations. For each pair of genes, consider the sample data as pairs of variables
(X1, Y1), . . . , (Xn,Yn). We view these as realizations of two random variables X and Y .
BET is a fully nonparametric method based on the copula transformation, which is computed
from the marginal CDFs. In particular, let U = FX(X) and V = FY (Y ), which are uniform
on [0,1], and preserve the relative relationship between X and Y . Because the CDFs FX(X)

and FY (Y ) are often unknown in practice, BET approximates them using the empirical CDF.
Thus, the ith observation in the empirical copula is (Ûi, V̂i) whose marginal distribution is
uniformly distributed on the equally spaced support points 1

n
, . . . , n−1

n
,1 on [0,1].

A key motivation for BET is that each decimal fraction number in the interval [0,1]
has a binary representation. The computation of binary white and shade dyadic subin-
terval patterns that underlie Figure 2 is motivated by the useful probabilistic binary ex-
pansions of the continuous uniform random variables U and V . These binary expansions

(Kac (1959)) are U = ∑∞
k=1 Ak/2k and V = ∑∞

k′=1 Bk′/2k′
, where Ak

iid∼ Bernoulli(1/2) and

Bk′
iid∼ Bernoulli(1/2). Similarly, each observation in the empirical copula Ûi and V̂i also has

a binary expansion: Ûi = ∑∞
k=1 Âk,i/2k , and V̂i = ∑∞

k′=1 B̂k′,i/2k′
. Note that the binary ex-

pansion of an observation Ûi is the binary representation of this number. Thus, Âk and B̂k′
can be regarded as the 0–1 indicator functions containing the randomness of Ûi and V̂i , for

example, Â1 = I (Ûi ∈ (1/2,1]) and Âk = I (Ûi ∈ ⋃2k−1

j=1 ((2j − 1)/2k,2j/2k]).
The shade and white regions underlying the BET statistic are based on the truncation of

these binary expansions at some finite depths d1 and d2, respectively, Ud1 = ∑d1
k=1 Ak/2k and

Vd2 = ∑d2
k′=1 Bk′/2k′

. The discrete variables Ud1 and Vd2 take on at most 2d1 and 2d2 values.
Hence, there are 2d1+d2 − 1 binary variables resulting from interactions between Ak and Bk′ .
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These variables are sufficient statistics to study interesting dependence (Zhang (2019)). In
order to present these interaction variables in the form of products and reflect dependence
between these products, we use the binary variables Ȧk = 2Ak − 1 and Ḃk′ = 2Bk′ − 1 to
replace Ak and Bk . Thus, the interaction events between Ak and Bk′ can be written as the
products ȦkḂk′ . For example, the events {A1 = 1,B1 = 1} and {A1 = 0,B1 = 0} lead to the
same interaction event {Ȧ1Ḃ1 = 1}. Out of these 2d1+d2 − 1 interactions, there are (2d1 −
1)(2d2 − 1) variables of product form Ȧk1 . . . Ȧkr Ḃk′

1 . . . Ḃk′
t

for some r, t > 0. We call these
variables cross interactions; each of which results from the product of at least one Ȧk and
one Ḃk′ and reflects a BET partition (the BID mentioned earlier) in [0,1]2; that is, each
product results in one type of white and shade regions partition. For example, in Figure 2
the BID A1B1 represents the cross interaction variable Ȧ1Ḃ1, where the observation i in
the white region reflects the event {Ȧ1,i Ḃ1,i = 1} and in the shade region reflects the event
{Ȧ1,i Ḃ1,i = −1}. Thus, the depth parameters d1 and d2 decide the amount and type of BIDs
considered in BET. The choice d1 = d2 = 2 is the right resolution to find the most dependence
patterns of biological interest (as the nine BIDs shown in Figure 2). We do not consider larger
choices of d for two reasons. First, since d = 2 cuts each interval into quarters and d = 3
cuts each interval into eighths, most of these patterns from larger depths, which can not be
seen at depth d = 2, capture relationships that are not expected to give useful insights into the
dependence inherent to gene expression. Second, it would entail a considerable computational
cost: when given d1 = d2 = 3, we have a total of 49 BIDs, including these nine patterns,
meaning the computational cost is raised by a factor of more than five. Zhang (2019) gives
more discussion about depth selection. Let a and b denote vectors of length d1 and d2 with
1’s at k1 . . . kr and k′

1 . . . k′
t , respectively, and 0’s otherwise; thus, we can denote the cross

interaction Ȧk1 . . . Ȧkr Ḃk′
1
. . . Ḃk′

t
as ȦaḂb. For simplicity of notation, the labels AaBb in

most figures represent the cross interactions ȦaḂb.
Now, we define the symmetry statistic S for a given cross interaction ȦaḂb as the differ-

ence of counts in white and shade regions in the corresponding BID. Since the value of the
cross interaction of the observation is 1 in white regions and −1 in shade regions, we can cal-
culate S as the sum of the observed binary interaction variables S = ∑n

i=1 Ȧa,i Ḃb,i . The Ud1

and Vd2 are strongly dependent when the absolute value |S| is far from zero for at least one
BID, according to the following fundamental observation of Zhang (2019): If Ud1 and Vd2

are independent, the symmetry statistic S satisfies (S + n)/2 ∼ Binomial(n,1/2), for a �= 0
and b �= 0. If the empirical copula transformation is used, we can use Ŝ = ∑n

i=1
̂̇
Aa,i

̂̇
Bb,i as

the symmetry statistic and (Ŝ + n)/4 ∼ Hypergeometric(n,n/2, n/2), for a �= 0 and b �= 0.
The issue of multiple comparisons across BIDs is handled by the Max BET procedure of

Zhang (2019) at depths d1 and d2. This is described as follows for a given pair of variables.
First, we compute all symmetry statistics S with cross interactions for the given d1 and d2.
Then we look for the symmetry statistic with the strongest asymmetry and record its p-value
and z-statistic |S|/√n. Finally, for this pair of variables we use a Bonferroni adjustment
across the cross interactions (BIDs) to obtain the corresponding familywise error rate p-value
for this maximum |S|. The dependence relationship is represented by the most significant
BID.

Notice that Figure 2 reveals a reflection property among the BIDs. For example, the BIDs
A1B1B2 (top-right) and A1A2B1 (bottom-left) represent the same relationship up to a switch
of the axis positions (i.e., reversal of the roles of the two genes) for the two random variables
U and V . There are three pairs of such off-diagonal reflected patterns. Identifying such pairs
results in six BID patterns: five nonlinear and one linearity. This reflection property will be
further discussed in Section 3.3.
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FIG. 3. Left: The scatter plot comparing expression of two genes in the TCGA breast cancer data in the nor-
malized log count scale with zero value imputation by the median; Middle: The scatter plot of the same two genes
in the normalized log count scale with the median values reset to the minimum and jittering applied to nonunique
values; Right: The scatter plot of the same two genes in the copula distribution scale.

3. Results from TCGA. In this section we first expand on the data preprocessing of
TCGA data set in Section 3.1. Then we summarize the analysis results in Section 3.2. Finally,
we discuss some specific nonlinear dependency patterns in the last few subsections.

3.1. Data preprocessing. The RNA-seq gene expression features of TCGA Lobular
Freeze breast cancer data set from Ciriello et al. (2015) contain 16,615 genes of 817 pri-
mary tumor samples, including five subtypes (proportion in the sample): Basal-like (16.6%),
HER2 (8.0%), Luminal A (50.8%), Luminal B (21.5%), and Normal-like (3.1%). Intrinsic
breast cancer subtyping was done using the PAM50 classifier (Parker et al. (2009)).

This gene expression data was preprocessed as described in Ciriello et al. (2015), which
included normalization and logarithms. In particular, during this genomics data preprocessing
each sample was normalized to a fixed upper quartile and then log 2 transformed. Genes with
more than 20% zero counts were excluded. Other genes with zero counts had their zeros
recorded as missing. A questionable choice made in that preprocessing was to replace these
missing values by the median for that gene. However, such data was the beginning of our
analysis. The poor consequences of this approach are illustrated in the left panel of Figure 3.
In particular, it shows the raw data of a pair of example genes in our TCGA data set, which
has many points piled up at the median representing missing values (zero counts). This is
an inappropriate way of handling the zeros, because all these data are based on counts, so a
zero count represents a small level of gene expression. As an alternative we first considered
moving the median values to be the same as the smallest value. In the case of no zero counts,
this is inappropriate because the median corresponds to a nonzero count. A simple fix to
this is to take the first nonzero count and leave it at the median. Thus, we address this by
setting all but the first of the median values to the minimum value. Some experimentation
revealed that this has a minimal impact. The result of this process is shown in the middle
panel of Figure 3. This causes many ties for the smallest value. Since BET is based on a
copula transform that essentially assumes continuous variables, a large number of ties will
cause severe noncontinuity and strongly impact the BET inference. Therefore, these points
are spread out in the interval of the minimum and the second unique minimum, using a jitter
approach. Specifically, to preserve the ranks, a small random value (uniformly distributed
between 0 and the difference between the second unique minimum and minimum) is added
to the nonunique minimum observations. Jittering has no impact on the BET significance
because the jitter points are within the first 20% of the data (recall that genes with more than
20% missing were excluded). Finally, we apply the empirical copula transformation; see the
right panel in Figure 3.
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TABLE 3
Four contexts and the corresponding sample sizes

Contexts All five subtypes LumA/LumB/Her2 Her2/LumB LumA

Sample sizes 817 656 241 415

As noted in Parker et al. (2009), these subtypes play a critical role in many aspects of
breast cancer. Our analysis in Section 3.3 confirms that the basal subtype tends to be quite
different from the rest. Hence, we also investigate the context of LumA/LumB/Her2, which
tends to be dominated by the most numerous subtype LumA. We further investigate the non-
LumA group, meaning the union of Her2/LumB, and LumA separately. Hence, our analysis
focuses on the four different contexts shown in Table 3, which are chosen to highlight impor-
tant aspects. Note that the BET analysis focuses on detecting nonlinearity but not subtypes.
However, there is a relationship between nonlinearity and subtypes. We set the depth param-
eters in the BET algorithm d1, d2 to be 2, and only focus on five nonlinear BIDs, as discussed
in Section 2.2. To control for multiple comparisons, in each context we use the Bonferroni
adjustment across genes to modify the BET output p-value of each pair, which has already
been adjusted across the nine BIDs. Specifically, we use the total number of pairwise com-
parisons of genes in TCGA (138,020,805) to do the Bonferroni correction. Then we use the
level 0.05.

The BET detection results of TCGA breast cancer data for these four different contexts
and five nonlinear BIDs are summarized in Section 3.2. More detailed descriptions are in
Section 3.3 through Section 3.6.

3.2. Summary of BET analysis. As we discussed at the end of Section 2.2, there are
three pairs of reflected nonlinear BIDs in all nine BIDs. Identifying such pairs results in five
nonlinear BIDs; see the five columns of Figure 4. From this point on, the Parabolic BID
shown in the first column refers to the union of this A1A2B1 BID and its reflection A1B1B2.
In our TCGA analysis, this Parabolic BID frequently finds a mixture data pattern. Similarly,
the W BID in the second column refers to the union of this A2B1 BID and its reflection A1B2,
since the shape of this BID looks like the letter W. This W BID tends to find a particular
bimodal pattern in our TCGA data. The rows of Figure 4 are the four contexts. The top gene
pairs are shown for each. The number of significant pairs for each BID is displayed at the top
of each panel. No pair is shown for the Her2/LumB context with the BID A1A2B2 because
there is no significant pair of genes.

Figure 4 shows the Parabolic BID in the first column, which contains the largest number of
significant pairs for each context. In those cases some obviously show mixtures of different
subtype distributions, such as the triangle Basal subtype in the lower right region of the top
five subtypes panel and the asterisk Her2 cases in the lower right region of the Her2/LumB
panel. The other relationships look strong but are not explained by subtypes, perhaps mo-
tivating additional genomic research. In particular, gene expression is indicative of many
biological phenomena. Some are related to cancer subtypes, and some are not. A more de-
tailed discussion of the gene pair in the upper left appears in Section 3.3 and of the gene pair
in the lower left in Section 3.4.

Some surprising bimodal patterns in column 2 are captured by the W BID, which seem not
to be driven by the breast cancer subtype information. In Section 3.6 we discuss the gene pair
on the top row of column 2. To investigate the potential biological relevance of this bimodal
dependence, an independent data set is used and discussed in Section 4.2.
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FIG. 4. BET diagnostic plots where the four contexts are the rows and the four nonlinear BIDs are the columns.
The most significant pair is shown for each. The number of significant pairs for each BID is shown at the top. The
symbols “H” and “P” at the top show that this most significant pair is Hoeffding’s D and Pearson correlation,
respectively, Bonferroni significant.

In column 3 some approximately linear pairs of genes are detected by the BID A1A2B1B2.
In Section 3.5 we analyze the top pair in column 3 to discuss the connection between linearity
and this nonlinear dependence pattern.

In column 4, as discussed in Section 2.1, we find an interesting biological separation in the
five subtypes panel (top), which exists between the triangle basal subtype and other breast
cancer subtypes. Moreover, in the LumA context (bottom), this checkerboard pattern suggests
that, while many points are along the main diagonal, two small clusters lie off the main
diagonal. This dependence pattern is not explained by the breast cancer subtypes and might
be worth deeper biological investigations.

In column 5, the biological explanation of the most significant gene pairs, shown in each
context, is not particularly clear. However, in Figure 2 the bottom-middle panel gives another
example of this BID, which does contain an interesting biological pattern. We notice that
the basal points are clustered in the upper-left corner, which are well separated from other
subtypes. Furthermore, the Luminal B (square) subtype appears mostly at a cluster in the
bottom center.

Figure 4 also allows the comparison of BET with Hoeffding’s D and Pearson correlation.
In particular, the symbols “H” and “P” at the top of each panel indicate that the correspond-
ing most significant gene pair is also Hoeffding’s D independence/Pearson correlation testing
Bonferroni significant across all 1.38 × 108 possible pairs. From Figure 4, we find that many
interesting nonlinear pairs of genes, discovered by BET, are not Bonferroni significant when
using Hoeffding’s D or Pearson correlation, especially some biologically interesting parabolic
patterns (Column 1). Hoeffding’s D and Pearson tend to discover approximately linear de-
pendence patterns. Based on this observation, an interesting question is how many of these
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TABLE 4
Comparison of BET, Hoeffding’s D and Pearson Correlation over BET significant pairs of five BIDs in the five

subtypes context

BIDs A1A2B1 A2B1 A1A2B1B2 A2B2 A1A2B2 Total

Number of BET significant pairs 130,274 34,485 2160 105 149 167,173
Number of Pearson correlation
significant pairs

38,834 34,064 1662 105 98 74,763

Proportion of Pearson
correlation significant pairs

29.8% 98.8% 76.9% 100.0% 65.8% 44.7%

Number of Hoeffding’s D
significant pairs

41,292 18,228 1071 56 58 60,705

Proportion of Hoeffding’s D
significant pairs

31.7% 52.9% 49.6% 53.3% 38.9% 36.3%

nonlinear significant dependence pairs found by BET can not be discovered by conventional
methods. This is studied in Table 4. The pairs discovered by BET are assessed for significance
by both classical linear Pearson correlation and the nonlinear Hoeffding’s D. Recall that, ac-
cording to Table 1, Hoeffding’s D is about three times slower than BET. We compare these
three methods over the significant pairs of genes of five nonlinear BIDs shown in Figure 4 in
the five subtypes context. Specifically, for the Parabolic BID (A1A2B1) in the five subtypes
context, we apply Hoeffding’s D over the 130,274 BET significant pairs of genes and record
the count of Pearson correlation and Hoeffding’s D significant results after the Bonferroni
adjustment for p-values across all pairs. Then we calculate the proportion of Pearson corre-
lation and Hoeffding’s D significant pairs in the BET significant pairs in each BID. Table 4
summarizes the number of BET significant pairs (first row), the number (second row), and the
proportion (third row) of Pearson correlation significant pairs as well as the number (fourth
row) and the proportion (fifth row) of Hoeffding’s D significant pairs for each BID.

Note that less than 30% of the pairs discovered by the Parabolic BID (A1A2B1) were
detected by Pearson correlation. For other patterns the performances of Pearson correlation
are better. On the other hand, about the comparison with Hoeffding’s D we notice that only
30%–50% BET significant pairs are detected by Hoeffding’s D test in each of the five BIDs.
Overall, 92,410 and 106,468 BET Significant Pairs are not discoverable by Pearson correla-
tion and Hoeffding’s D. This result indicates that BET is substantially more powerful against
these particular types of nonlinear dependence.

3.3. Mixture pattern for five subtypes. In this section we discuss the pair of genes shown
in the top panel of Figure 5: ANKS6 and JAM3, which have the most significant mixture
dependence pattern. The dependence of these two genes is captured by the shade region
of this BID. From the log-scale scatter plot (top-right) and BET diagnosis plot (top-left)
in Figure 5, it is visually apparent that the basal subtype group is separated from the other
subtypes. In particular, the nonbasal cases look like a classical bivariate Gaussian distribution
with a positive correlation between ANKS6 and JAM3 (larger values of ANKS6 lead to
more expression of JAM3). However, the basal cases behave very differently: larger ANKS6
goes along with smaller JAM3, indicating a negative correlation. Ignoring this important
difference in direction of correlation can have a serious impact on gene network analysis.
ANKS6 in this example is the main driver of the separation between basal and the others.

Here we revisit the reflection issue from the end of Section 2.2. As discussed above, the
BIDs A1A2B1 and A1B1B2 are identical if we switch the genes on the x-axis and the y-axis.
Since the pair of genes in this example (ANKS6 and JAM3) are detected by the A1A2B1
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FIG. 5. Top-left: BET diagnosis plot for the pair of genes: ANKS6 and JAM3, which shows a strong surprising
dependency with large z-statistic value and three shade rectangular regions. Top-right: The scatter plot of the
same two genes in the normalized log count scale after preprocessing. Bottom: The proportions for each breast
cancer subtype (except Normal-like) in each shade rectangular region.

BID, reversing the ordering of these two genes will give the reflected pattern (A1B1B2). This
example explains why only five nonlinear BIDs are considered here.

Further insight comes from splitting the shade region into three rectangular regions (see the
numerical labels in the top-left panel) and calculating the respective proportions of the four
breast cancer subtypes (ignoring the Normal-like) in each shade rectangle (bottom panels).
These proportions reveal how the subtypes drive this relationship.

In the proportion bar plots, LumA and LumB subtypes have high proportions in Regions 1
and 2. Those two subgroups account for 88.7% and 92% in the two regions separately, where
the basal subgroup only accounts for 5.4% and 2.8%. However, in Region 3 the proportion
of basal reaches 67%, and the total proportion of LumA and LumB is 21%. This observation
indicates that the positive correlation of the LumA and LumB domains are in Regions 1
and 2, and the differing basal correlation is in Region 3. The Pearson Chi-square test of
independence is used to confirm this observation, for the counts of points in Table 5.

The p-value of this Chisq test is smaller than 2.2 × 10−16 (i.e., smaller than floating-
point round-off error), and it shows a strong significance that these four subtypes are not
homogeneously distributed in the shade regions. To more directly validate the separation
between basal and the others, all others are combined into a single group, and the Chi-square
test gives another small p-value less than round-off error. This result confirms the observation
that this dependence pattern captured by the shade regions is very strongly significant and is
influenced by the mixture of basal and other subtype distributions.
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TABLE 5
Observed counts for four breast cancer subtypes in three shade regions

Subtypes Region 1 Region 2 Region 3

Basal 9 8 90
LumA 86 229 6
LumB 63 37 22
Her2 10 15 16

The relationships between pairs of genes with respect to this same BID A1B1B2 is shown
by a network connection plot in Figure 6 (a similar network plot with respect to five nonlinear
BIDs is given in Supplement A (Xiang et al. (2023)). Nodes in Figure 6 represent genes. This
particular pattern of nonlinear BET dependence is highlighted by edges, which show Bonfer-
roni statistical significance between genes. Furthermore, genes are ranked by their maximum
BET z-scores. As noted in Zhang (2019), z-scores, reflecting the number of standard devia-
tions above the mean, are more interpretable when p-values are extremely small. As shown
in Figure 4, there are 130,274 significant pairs of genes for this BID and its reflection. To
avoid a too cluttered network graphic, only the top 200 genes are shown in Figure 6. These
200 genes have 311 significant dependence edges for this Parabolic BID. Genes at the center
of some visually important communities are labeled. Each community is a set of genes that
shows this relationship with the center gene. Notice there are a number of gene communities
representing different biological dependencies that are significant with respect to this BID.
Figure 5 suggests that much of this nonlinear dependence may be due to the basal subtype,
which is well known to be quite different from the others. However, there can be other causes
of this pattern. For example, Figure 8 shows that the gene ZDHHC2 has such dependence,
even when the basal subtype is left out of the analysis. This gene appears in Figure 6 as the
point represented by the black triangle.

Good insights into any of these gene communities and their functions come from finding
where they appear among published gene signatures, such as those shown in The Molecular
Signatures Database (MSigDB), a collection of annotated gene sets for use with Gene Set
Enrichment Analysis (Liberzon et al. (2011, 2015), Subramanian et al. (2005)). For example,
we performed gene set enrichment analysis on the labeled communities. The gene set in the

FIG. 6. Network connection plot of 200 most significant genes (nodes) with 311 edges for the BID A1B1B2.
Each node represents one gene, and each edge represents a significant dependence between those genes. The
large community illustrated there are many genes having significant mixture dependence pattern with the center
gene, such as ANKS6. The point represented by the black triangle is the gene ZDHHC2 featured in Figure 8.
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FIG. 7. Left: BET diagnosis plot for a pair of genes which shows the mixture dependence within only the Luminal
A subgroup. Right: The scatter plot of the same two genes in the normalized count scale. A point cloud with a
strong positive correlation is on the left of the entire group, and the remaining cases form a more diffuse cluster
on the bottom-right.

largest (ANKS6) community is strongly associated with stromal or immune features. This
is consistent with the previous finding that basal-like breast cancer has increased immune
signature expression (Iglesia et al. (2016)). The gene analysis of the other label communities
did not give such good biological interpretations. A full list of gene set enrichment analysis
results for ANKS6 is in Supplement B (Xiang et al. (2023)).

3.4. Mixture pattern for only Luminal A subtype. While subtypes have played an im-
portant role in the diagnosis and treatment of breast cancer, the heterogeneity of the disease
motivates deeper investigation within subtypes. Here we focus only on the Luminal A breast
cancer subtype observations. Figure 7 shows an additional interesting mixture dependence
pattern in both the BET diagnosis (left panel) and log-scale scatter (right panel) plots. The
right panel contains a positively correlated Gaussian point cloud on the left. There is a more
diffuse cluster toward the lower right. This seems to indicate a mixture behavior. In particular,
the gene ZDHHC2 bifurcates the data into a cluster where it is strongly positively correlated
with CELF2 and another cluster where large values of ZDHHC2 correspond to small val-
ues of CELF2. Hence, this pair of genes highlights potentially interesting subgroups, which
merits a deeper investigation.

The connection plot in Figure 8 shows which genes have many significant pairs within
the 200 most significant genes in the LumA only context with the Parabolic BID. There are
190 significant dependence edges. This can be less than 200 because there are many pairs
that only connect with each other. ZDHHC2 and FGF10 are two central genes having large
communities, which motivate a deeper investigation. Checking carefully, the individual plots
reveal that, in all of these pairs, ZDHHC2 and FGF10 play the bifurcating role shown in
Figure 7 in the dependence with each of these other genes. To further illustrate this bifurcation
property, we show more examples of pairs about ZDHHC2 for this pattern in Supplement C
(Xiang et al. (2023)).

To investigate the corresponding gene function, we use gene set enrichment analysis again
to compute overlaps between these communities and gene sets from MSigDB. This ZDHHC2
community has overlaps with some gene sets related to breast cancer and, in particular, the
luminal subtype, such as CHARAFE_BREAST_CANCER_LUMINAL_VS_MESENCHY-
MAL_DN and CHARAFE_BREAST_CANCER_LUMINAL_VS_BASAL_DN (Charafe-
Jauffret et al. (2006)). A full list of overlapping results for ZDHHC2 is in Supplement D
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FIG. 8. Connection plot of 200 most significant genes (nodes) with 190 edges for the Parabolic BID in the
context of only Luminal A. ZDHHC2 and FGF10 are central genes in two large communities. The ZDHHC2 gene
community has overlaps with some luminal gene sets in The Molecular Signatures Database (MSigDB).

(Xiang et al. (2023)). This confirms that ZDHHC2 and its community are an important player
at luminal breast cancer and could motivate a deeper investigation into the role played by the
ZDHHC2 community. On the other hand, a similar investigation of FGF10 doesn’t show the
connection with research to date on luminal breast cancer, again possibly motivating further
biological work.

3.5. Connection between linear and nonlinear patterns. In column three of Figure 4,
some approximately linear pairs of genes with a second-order structure are detected by the
BID A1A2B1B2. The left panel of Figure 9 gives the BID diagnosis of the top row pair
of genes in Column 3 (PROSC and ASH2L) with the largest symmetry statistic value and
z-score in all nine BIDs. As discussed in Section 2.1, this BET diagnosis plot shows that
this pair is not bivariate normal with concentrations in both ends of the diagonal. A deeper
investigation of the structure of this pair of genes is from the scatter plot in the middle panel of
Figure 9. It reflects an approximate linear relationship with strong skewness along the major
axis. To analyze the connection between this pair and the linear dependence BID A1B1,
we show the linear BID in the right panel. The corresponding counts of white and shade
regions for BID A1A2B1B2 in the left panel are 607 and 210 so that the symmetry statistic S

and the z-score are 397 and 13.89; the corresponding counts for the linear BID in the right
panel are 599 and 218 so that the symmetry statistic S and the z-score are rather close but
slightly smaller values of 381 and 13.33. These numbers reflect the unusual pattern of greater

FIG. 9. Left: The most significant BID diagnosis plot for a pair of genes: PROSC and ASH2L. Middle: The
scatter plot of the same two genes in the normalized count scale. Right: The corresponding linear BID A1B1 for
the same two genes. The value of the BET statistic for the linear BID is slightly smaller than that for the most
significant BID.
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FIG. 10. Left: BET diagnosis plot for a pair of genes that shows a bimodal dependence pattern. Right: The
scatter plot of the same two genes in the normalized count scale. This nonlinear relationship seems to be driven
by the bimodal distribution of gene RPL9.

variation in the middle of the distribution with relatively less variation from the diagonal
for the rest of it. This suggests a different type of mixture model, which may merit deeper
investigation.

3.6. Bimodal pattern. The second column of Figure 4 shows a perhaps surprising bi-
modal dependence pattern that is shared by many pairs of genes.

To more deeply investigate this bimodal dependence, we take the top pair in the context
of five subtypes as an example. Figure 10 shows the BET diagnosis (left panel) and log-scale
scatter (right panel) plots of the most significant pair of this pattern in the context of five sub-
types: RPL9 and RPL32. RPL9 in this pair separates the group into two positively correlated
Gaussian clusters, suggesting this surprising bimodal dependence pattern perhaps is related
to the gene RPL9. To investigate whether this is an important biological phenomenon or an
artifact of some particular preprocessing steps in the Lobular Freeze TCGA data, we consider
an additional completely separate data set in Section 4.2.

4. Biological reproducibility of TCGA results. An essential issue with exploratory
data analyses, as shown in Section 3, is their reproducibility. To investigate this for the inter-
esting results shown in Sections 3.3 and 3.6, we consider an independent genomic data set:
the Sweden Cancerome Analysis Network-Breast (SCAN-B) (Brueffer et al. (2018)). This
data set came from the NCBI Gene Expression Omnibus (GSE96058). The Data set was pre-
processed, as described in (Saal et al. (2015)). We use a subset of the gene expression data
set, which contains 2969 samples with full clinical data and 30,865 genes. There are 15,197
genes existing in both the SCAN-B and TCGA data sets. We only consider these common
genes during this validation process. There was no further processing step in the SCAN-B
set for our reproducibility analysis. First, in Section 4.1 we study the reproducibility of the
mixture patterns in the contexts of the five subtypes, as shown in Section 3.3. Then in Sec-
tion 4.2, we find that the bimodal distribution of the gene RPL9 in Section 3.6 is not observed
in SCAN-B. This discrepancy is explained in Supplement E (Xiang et al. (2023)).

4.1. Biological reproducibility of the mixture pattern. In Section 3.3 we find an inter-
esting mixture pattern detected by the Parabolic BID in the context of the five subtypes. To
investigate whether this mixture pattern is reproducible in the SCAN-B data, we chose the
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FIG. 11. Scatter plot comparing the Parabolic BID z-scores between the SCAN-B and TCGA data sets for the
significant mixture pairs within the top 200 genes in the five subtypes context of TCGA. The dark square and dark
triangle points are illustrated in Figures 12 and 13.

most significant 200 genes for this context in TCGA results, as shown in the network con-
nection plot Figure 6. To understand the relationship between pairs over the two data sets, we
rerun BET for these pairs in the SCAN-B data set and record the corresponding z-scores for
the Parabolic BID. Thus, we compare the significance for only the mixture pattern in these
two data sets, as shown in Figure 11.

Within these top 200 genes, seven genes do not exist in the SCAN-B. Considering only the
remaining, 193 genes resulted in 298 significant (in TCGA) mixture pairs. The corresponding
SCAN-B significance for each pair is compared in Figure 11. In particular, each point is one
mixture pair whose TCGA z-score is shown on the vertical axis and SCAN-B z-score is
shown on the horizontal axis.

Because the sample size is much larger for SCAN-B, stronger significance is expected for
most pairs. This is highlighted using the dark line y = x showing which pairs are equal. As
expected, most SCAN-B z-scores are larger, reflected as circle points to the right of the line
y = x.

Points to the left of the line y = x seem to fall into two different types. For the triangle
points, the TCGA z-score is not much bigger than the SCAN-B z-score, suggesting this could
be just random variation. This is more carefully investigated in Figure 12. The square ones
are investigated in Figure 13. These are gene pairs with substantial missing values in the
SCAN-B version of the data.

Typical behavior of the triangle points is studied in Figure 12 by showing the pair rep-
resented as a dark triangle in Figure 11. The BET diagnosis (left panel) and the SCAN-B

FIG. 12. Left: BET diagnosis plot for a pair of genes in the SCAN-B data set that is shown as a dark triangle
in Figure 11. Middle: The scatter plot of the same two genes in the original SCAN-B scale. Left: The scatter plot
of the same two genes in the normalized TCGA count scale. This example represents gene pairs which tend to be
less significant in the SCAN-B data set but still have the mixture pattern.
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FIG. 13. Left: BET diagnosis plot for a pair of genes in the SCAN-B that is shown as a dark square in Figure 11
revealing a data threshold issue. Middle: The scatter plot of the same two genes in the original SCAN-B scale.
Left: The scatter plot of the same two genes in the normalized TCGA count scale. This example represents a type
of gene pairs which tend to be less significant in the SCAN-B data set.

scatter (middle panel) plots definitely show the same behavior as in Figure 5, which is a clear
separation between basal and the other subtypes. However, the separation of the basal is more
distinct in TCGA, as shown in the TCGA scatter plot (right panel) of the same two genes,
which is consistent with the more significant TCGA z-scores. We observed similar behavior
for each of the pairs represented as triangles in Figure 11.

Figure 13 shows the pair highlighted with the dark square in Figure 11, which illustrates
a different phenomenon represented by the pairs symbolized by squares. The BET diagnosis
(left panel) and the SCAN-B scatter (middle panel) plots reveal a data threshold issue in the
SCAN-B data set. The corresponding TCGA scatter plot (right panel) of this same pair does
not have this issue. This threshold effect apparently is caused by missing values in the SCAN-
B data set being replaced by the minimum of their values. This same phenomenon occurred
for each of the pairs represented by squares in Figure 11. As discussed in Section 3.1, we
recommend handling such threshold data by jittering.

4.2. Lack of reproducibility of the bimodal pattern. Here we study the pair of genes that
gives the strongest bimodal pattern signal in TCGA data set, which are RPL9 and RPL32,
as shown in Figure 10. We rerun BET on this pair of genes in the SCAN-B data, and the
strongest BID for this pair is linear, as shown in the left panel of Figure 14. Both the BET
diagnosis (left panel) and the scatter (middle panel) plots show a relatively standard positively

FIG. 14. Left: BET diagnosis plot of the most significant BID (A1B1) for RPL9 and RPL32 in the SCAN-B
data set. Middle: The scatter plot of the same two genes in the original SCAN-B scale. Right: BET diagnosis plot
of the W BID for the same two genes. This shows the bimodal pattern observed for RPL9 in TCGA data is not
biologically reproducible.
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correlated linear dependence between RPL9 and RPL32. The right panel of Figure 14 gives
the BET diagnosis plot for the W BID for this pair, which is much less significant than the
linear pattern (z = 30.85 vs. z = 10.96). This shows that the surprising bimodal dependence
observed in Figure 10 is not biologically reproducible. Instead, it seems to be a processing
artifact. As noted above, deeper investigation of the artifact is given in Supplement E (Xiang
et al. (2023)).

5. Conclusion. TCGA gene expression data set is an important genomics data resource
that shows many dependence patterns among genes, especially some interesting nonlinear de-
pendence patterns. We use the computationally fast and powerful dependence testing method
called BET to discover significant nonlinear dependence relationships in various contexts
using the breast cancer subtypes information. We find that some interesting nonlinear depen-
dence patterns are explained biologically by the mixture of the given breast cancer subtype
distributions, such as the mixture pattern for the context of five subtypes. Some relationships
motivate further biological work, such as the mixture pattern for the LumA only context. We
also investigate the reproducibility of these results using an independent genomics data set.
This shows that the mixture pattern is reproducible while the bimodal pattern related to the
gene RPL9 is not and is apparently caused by some preprocessing steps.
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SUPPLEMENTARY MATERIAL

Supplement A: The relationships between top genes with respect to five nonlinear
BIDs (DOI: 10.1214/23-AOAS1745SUPPA; .zip). A network connection plot of the rela-
tionships between the 200 most significant genes with respect to five nonlinear BIDs.

Supplement B: Gene set enrichment analysis results for the mixture dependence of
the ANKS6 community (DOI: 10.1214/23-AOAS1745SUPPB; .zip). A full list of overlap-
ping computation (using Gene Set Enrichment Analysis, GSEA) results of the ANKS6 Com-
munity with the gene sets in the Molecular Signatures Database (MSigDB) for the Mixture
Dependence in the Five Subtypes context.

Supplement C: More examples for the gene ZDHHC2 in the LumA context for the
parabolic BID (DOI: 10.1214/23-AOAS1745SUPPC; .zip). Two more significant parabolic
BID gene pairs with ZDHHC2 in the context of only Luminal A. ZDHHC2 is on different
axes in these two examples. This shows the reflection property of BET and the bifurcating
role of ZDHHC2.

Supplement D: Gene set enrichment analysis results for the mixture dependence of
the ZDHHC2 community (DOI: 10.1214/23-AOAS1745SUPPD; .zip). A full list of over-
lapping computation (using GSEA) results of the ZDHHC2 Community with the gene sets in
the MSigDB for the Mixture Dependence in the LumA only context.

https://doi.org/10.1214/23-AOAS1745SUPPA
https://doi.org/10.1214/23-AOAS1745SUPPB
https://doi.org/10.1214/23-AOAS1745SUPPC
https://doi.org/10.1214/23-AOAS1745SUPPD
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Supplement E: Deeper investigation of the bimodal structure of RPL9 (DOI:
10.1214/23-AOAS1745SUPPE; .zip). Supplement E shows that the bimodal distribution of
the gene RPL9, discussed in Sections 3.6 and 4.2 is an artifact caused by the early gene
mapping algorithm used to preprocess that data set.
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