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ABSTRACT
◥

Purpose: In estrogen receptor–positive (ERþ)/HER2� breast
cancer, multiple measures of intratumor heterogeneity are associ-
ated with a worse response to endocrine therapy. We sought to
develop a novel experimental model to measure heterogeneity in
response to tamoxifen treatment in primary breast tumors.

Experimental Design: To investigate heterogeneity in response
to treatment, we developed an operating room-to-laboratory
pipeline for the collection of live normal breast specimens and
human tumors immediately after surgical resection for proces-
sing into single-cell workflows for experimentation and genomic
analyses. Live primary cell suspensions were treated ex vivo
with tamoxifen (10 mmol/L) or control media for 12 hours, and
single-cell RNA libraries were generated using the 10X Genomics
droplet-based kit.

Results: In total, we obtained and processed normal breast tissue
from two women undergoing reduction mammoplasty and tumor
tissue from 10 women with ERþ/HER2� invasive breast carcinoma.
We demonstrate differences in tamoxifen response by cell type and
identify distinctly responsive and resistant subpopulations within
the malignant cell compartment of human tumors. Tamoxifen
resistance signatures from resistant subpopulations predict poor
outcomes in two large cohorts of ERþ breast cancer patients and are
enriched in endocrine therapy–resistant tumors.

Conclusions: This novel ex vivomodel system now provides the
foundation to define responsive and resistant subpopulations with-
in heterogeneous human tumors, which can be used to develop
precise single cell–based predictors of response to therapy and to
identify genes and pathways driving therapeutic resistance.

Introduction
Breast cancer is the most common cancer in women, and around

600,000 women die from breast cancer worldwide each year (1).
Approximately 75% of breast cancers are clinically positive for the
estrogen receptor–positive (ERþ) and categorized in the luminal
subtypes. In general, ERþ/luminal breast cancers respond to endocrine
therapy targeting ER (2, 3). However, up to a third of early ERþ breast
cancers are inherently unresponsive or develop resistance to endocrine
therapy, and resistance eventually develops in all patients with met-
astatic disease (4, 5).

Resistance to endocrine therapy is complex and multifactorial (6).
Known mechanisms of resistance include autologous activation of ER

signaling (7–9), alterations of transcription factors (10, 11), and
upregulation of growth factor signaling pathways (12–15). However,
these account for only a minority of cases, and mechanisms have not
been described for the majority of endocrine-resistant tumors.

Signatures of estrogen-response genes defined from the ERþ cell
line MCF-7 are highly prognostic in ERþ breast cancer patients (16),
demonstrating the importance of ER transcriptional activity on
tumor biology and outcomes. Similarly, in patients treated with
endocrine therapy, gene-expression changes, including reduced
proliferation, correlate strongly with outcome (17–19). However,
bulk profiling averages the signal obtained from multiple cell types
including stromal, immune, and normal epithelial cells, which are
relatively abundant in ERþ/HER2� tumors (20). Tumor heteroge-
neity within human breast cancers is associated with metastasis and
worse response to treatment, including endocrine therapy (21–24).
Distinct response to treatments has been described within breast
tumors in cell populations with unique gene expression pro-
files (25, 26). Therefore, bulk analysis that includes cell types with
distinct responses could mask relevant tumor-specific response
elements and low-abundance subpopulations that may contribute
to resistance. In addition, nontumor cell types with distinct
responses could limit precision in defining tumor-specific tran-
scriptional changes. Improved understanding of how distinct popu-
lations within human tumors respond to endocrine therapy, as well
as the heterogeneity in response within tumors, is needed to reveal
underlying mechanisms of resistance.

In this study, we sought to determine how subpopulations of cells
within normal breast epithelium and ERþ/HER2� breast tumors
respond to tamoxifen treatment using an ex vivo treatment model
coupled to single-cell RNA sequencing (scRNA-seq). We hypothesize
that subpopulations within ERþ/HER2� human breast tumors have
distinct transcriptional responses to tamoxifen and that discerning
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heterogeneity in cellular response will identify patients at risk for
treatment failure.

Materials and Methods
Patient specimens

Patients were identified with ERþ/HER2� breast cancer or without
breast cancer undergoing reduction mammaplasty. Patients received
no preoperative therapy.Written informed consent was obtained from
all patients under a protocol that was approved by the Institutional
Review Board at the University of North Carolina at Chapel Hill in
accordance with the U.S. Common Rule. Consent included access to
deidentified patient data, which was obtained through an honest
broker. Participants were not compensated for participation.

Tissue processing and dissociation
Primary tissue specimens were obtained in the operating room and

placed in DMEM/F12 (Gibco) media with 1% Penicillin–Streptomycin
(Life Technologies). Specimens were transferred immediately to the
laboratory andprocessed into single-cell suspensionsby sharplymincing
into 2- to 4-mm fragments. Enzymatic dissociation was then performed
using Gentle Collagenase/Hyaluronidase (Stemcell Technologies Inc.
07919) in DMEM/F12 supplemented with 5% BSA (Sigma Aldrich),
Hydrocortisone (Stemcell Technologies Inc.), HEPES (Corning), and
Glutamax (Gibco) for 16hours at 37�Cwith cell agitation. The cellswere
gently centrifuged and washed twice with PBS (Gibco) supplemented
with FBS andHEPES buffer. Cells were resuspended in cold ammonium
chloride solution (Stemcell Technologies Inc. 07800) and incubated at
room temperature to remove red blood cells. Cells were centrifuged and
briefly trypsinized in warm 0.05% Trypsin-EDTA (Gibco) and DNase I
(Stemcell Technologies Inc. 07900). Cells were further dissociated with
dispase (Stemcell Technologies Inc. 07923) and DNase I. Cells were
centrifuged andwashed then resuspended inDMEM/F12 with 10% FBS
and 1%Penicillin–Streptomycin. Cells were then strained usingmultiple
rounds of sequential straining with 40-mm mini strainers (Pluriselect
USA Inc.) to remove cell debris.

Cell line culture
We obtained the ERþ/HER2� cell line T47D from the ATCC. T47D

cultures were maintained at 37�C with 5% CO2 in DMEM with 10%
FBS and 1% Penicillin–Streptomycin.

Tamoxifen suspension
Cells were counted using trypan blue (Invitrogen) and the

Countess II cell counter (Life Technologies). Dissociated single
cells (n ¼ 100,000) were placed in suspension on an Ultra-Low
attachment microplate (Corning 3474) in DMEM/F12 media sup-
plemented with 10 nmol/L estradiol (Sigma Aldrich). Paired sus-
pensions were treated with control media or media containing
10 mmol/L 4-OH tamoxifen, which is a commonly used in vitro
dose but up to 300X higher than circulating levels in patients treated
with tamoxifen. Suspensions were incubated at 37�C with 5% CO2

for 12 hours. Graphical representation of workflow from tumor
resection to data analysis is shown in Fig. 1A.

scRNA-seq
scRNA-seq was done with the 10xGenomics ChromiumNext GEM

Single Cell 30 v3.1 reagent kits according to themanufacturer’s revision
D user guide. After 12-hour suspension, viability was assessed using
trypan blue, quantified using the Countess, and 7,000 to 10,000 viable
cells were targeted per library. Libraries were sequenced on the
NextSeq500 and NextSeq2000 (Illumina) platforms with pair-end
sequencing and single indexing according to the recommended man-
ufacturer’s protocols.

Bulk RNA-seq
Formalin-fixed, paraffin-embedded (FFPE) blocks were reviewed

for high tumor concentrations and 10-mm unstained slides cut. RNA
was isolated from the FFPE tissue by use of the High Pure FFPE RNA
Micro Kit (Roche 04823125001). Slides were incubated in Hemo-De
(Scientific Safety Solvents HD-150) and then washed in 100% and 70%
ethanol. The tissue was then air-dried at 55�C. Tissue Lysis Buffer and
Proteinase K were then added to the tissue pellet and incubated at
55�C. Binding Buffer and ethanol were then added to the tissue pellet,
and the supernatant was filtered out via filter tube. DNase Solution and
DNase Incubation Buffer were then added to the filter tube and
incubated at room temperature. A series of washes were then per-
formed using Wash Buffer I and Wash Buffer II. Elution Buffer was
then added to the filter tube, incubated at room temperature, and RNA
was then eluted.

PAM50 subtype classification in bulk RNA-seq data
RNA-seq reads were aligned to the human genome hg38 (genco-

de_v36) from Genomic Data Commons using STAR v2.7.6a. Tran-
scripts were quantified using Salmon v1.4.0. The matrices were upper
quartile fixed normalized (UQN) where quantile (0.75) ¼ 1,000. We
used the HER2/ER subgroup-specific gene-centering method
described by Fernandez-Martinez and colleagues (27) using log2-
transformed UQN data and IHC status. The expression values of the
PAM50 genes were then HER2/ER-subgroup-specific gene-centered,
and the PAM50 predictor (28)was applied to assign subtype calls using
centroid correlation values.

Determining Ki67 on matched clinical specimens
Slides from clinical FFPE blocks were obtained for all tumors. IHC

for Ki67 antigen was performed on FFPE tissue sectioned at 4 mm.
Staining was performed using the Leica Bond III Autostainer system.
Slides were dewaxed in Bond Dewax solution (AR9222) and hydrated
in BondWash solution (AR9590). Heat-induced antigen retrieval was
performed at 100�C in Bond-Epitope Retrieval solution 1 pH-6.0
(AR9961). After pretreatment, slides were incubated with Ki67 Anti-
body (MIB-1, Dako) at 1:100 for 30 minutes followed by Novolink
Polymer (RE7260-K) secondary. Antibody detection with 3,30-diami-
nobenzidinewas performed using the Bond Intense R detection system

Translational Relevance

Intratumor heterogeneity is associated with recurrence, metas-
tasis, and reduced sensitivity to endocrine therapy in estrogen
receptor–positive (ERþ)/HER2� breast cancer. However, experi-
mental models to characterize cell populations within primary
human tumors and determine distinct responsiveness to therapy
have been lacking.We present a novel ex vivo treatment platform to
identify heterogeneity in response to tamoxifen within primary
ERþ/HER2� breast tumors. Using this model, we identify and
characterize unique responsive and resistant subpopulations and
identify therapeutic vulnerabilities of tamoxifen resistant tumor
subpopulations. The use of this platform to uncover subpopula-
tions within human solid organ tumors with distinct drug sensi-
tivities has the potential to advance precision medicine paradigms
by allowing the development of individualized treatment regimens
targeting distinct elements within tumors.
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(DS9263). Ki67 was scored by a breast pathologist (B.C. Calhoun)
according to the Ki67 IHC MIB-1 pharmDx (Dako Omnis) Interpre-
tationManual for Breast Carcinoma. TheKi67 pharmDx score (%)was
calculated as number of Ki67 staining viable invasive tumor cells
divided by the total number of viable invasive tumor cells (minimum
2,000/slide), multiplied by 100.

Data processing and cluster annotations
The filtered feature barcodematrices were generated by Cell Ranger

from 10x Genomics. Data processing and subsequent downstream
analyses were divided into four analysis blocks (ABlock1–4). In
ABlock1, two paired normal samples were analyzed as tamoxifen/con-
trol pairs (four samples in total). ABlock2 involved T47D cells,
ABlock3 included 10 pairs of primary tumor samples, and ABlock4
focused on targeted analysis of four pairs of ERþ breast cancer tumors
that were selected on the basis of the depletion of the scTAM-response-
T47D signature. For each analysis block, Seurat objects were built from
the filtered feature barcode matrix for samples assigned to the analysis
block using the Seurat R package (29, 30).

Outlier cells were defined by three metrics: a low number of UMI
counts, a low number of genes expressed, and a high percent
mitochondrial read count (>25%). For ABlock1 and ABlock4, we
used the following threshold values to identify outliers: the number
of UMI counts <2,000 and the number of genes expressed <1,000.
For ABlock2 and ABlock3, we used more stringent threshold values
using UMI counts <5,000 and the number of genes expressed
<2,000 to select cells with higher quality. We used higher thresh-
olding to select higher quality cells to exclude specimens with a
lower number of epithelial cells with higher quality. The outlier
cells according to these criteria were removed before downstream
analyses.

After removing doublets by DoubletFinder (31) to make the final
Seurat object for each sample, we applied Seurat’s merge() func-
tion (32) to combine multiple Seurat objects for each analysis block.
The log normalized procedure was applied to the gene expression
matrix. Subsequently, a scaling operation was performed on the
expression values of the 2,000 most variably expressed genes to
facilitate subsequent principal component analysis (PCA). The
confounding effect of mitochondrial genes (32) was regressed out.
A reduction in dimensionality was performed through the sum-
marization of the 2,000 most variably expressed genes into 50
principal components (PC) via PCA. The cells were then projected
onto a uniform manifold approximation and projection (UMAP)
embedding via Seurat (30) and ggplot2 (33) R packages. For further
clustering analysis, a shared nearest-neighbor graph was con-
structed using 30 PCs, and Louvain clustering was performed with
a resolution of 0.8.

Cell type annotation
Cell type annotations were performed using the SingleR (34) R

package. The normalized expression values obtained fromhuman bulk
RNA-seq data sourced from Blueprint and ENCODE were used as
reference datasets, available via celldex, with SingleR (34).

To facilitate analysis for each block, a merged dataset was created
by integrating the raw count matrices of samples assigned to each
analysis block. Subsequently, a canonical correlation analysis was
performed using Seurat (32) to correct for batch effects, and cell
clustering was performed using the Louvain clustering method.
The representative cell type for each cluster in the merged dataset
was annotated with a cell type label based on the predominant cell
type within each cluster.

Distinguishing malignant cells from nonmalignant
epithelial cells

To differentiate malignant cells from normal epithelial cells,
copy-number events for each cell cluster were estimated using the
InferCNV R package (35, 36) using a normal background com-
posed of immune cells and endothelial cells. The cell clusters were
specified in the InferCNV annotations file, enabling the estimation
of copy-number variations (CNV) at the level of these clusters. The
epithelial cells were subsequently stratified into epithelial tumor
and epithelial normal cells by plotting scatter plots of the CNV
values and the correlation values with the top 5% of cells with high
CNV values (37, 38). The tumor epithelial cells were used for
downstream analyses for characterizing the molecular subtypes of
tumor cells and identifying molecular signatures of tamoxifen
resistance.

PAM50 subtypes and proliferation score on single cells
Molecular subtype estimation was performed by the nearest cen-

troid method using four centroids of LumA, LumB, HER2� enriched,
and basal, obtained from scRNA-seq profiles and the molecular
subtype classifications of single cells by SCSubtype (38) of human
breast cancers. The proliferation score was computed by the averaged
normalized expression of 11 genes (38).

Differential gene expression and pathway enrichment
analysis

The differential gene expression between groups was deter-
mined using Seurat’s FindMarkers() function (32), with log2fold
change (log2FC) threshold set at 0.25 and minimum percentage
of expressed cells set at 0.25. The markers were then further
filtered on the basis of an adjusted P value threshold of less than
0.01. Heat maps were used to visualize the data. The enrichment of
cancer hallmark gene sets (39) and a curated list of breast cancer
relevant gene signatures (40) were assessed using hypergeometric
tests with enricher() function from the clusterProfiler package
(41) with q-value threshold of less than or equal to 0.01. Cell-cycle
phase for cells within resistant clusters was determined using
the Seurat CellCycleScoring() function using cell-cycle marker
genes (36).

Survival analysis of single-cell signatures
The clinical significances of gene signatures were estimated by

Kaplan–Meier curves. The signature score was defined by the
median expression of signature genes. Patients with ERþ/HER2�

tumors that received endocrine therapy in METABRIC (refs. 42, 43;
EGAS00000000083) or SCAN-B (refs. 44, 45; GSE202203) were
stratified into high/low (by 50th percentile) and high/med/low (by
tertiles) groups by signature scores. Because high expression of
genes that increase in expression with tamoxifen treatment may be
associated with poor response, we generated a resistance signature
of upregulated genes in response to tamoxifen in malignant cells
(scTAM-resistance-M) from the top 300 upregulated genes ranked
by FC after selecting genes with log2FC > 0.25 and adjusted P < 1e-6,
in ABlock4 using our four pairs of tumor samples (Supplementary
Table S5). After comparing transcriptomic profiles in tamoxifen-
resistant clusters (clusters 3, 12, and 19) with tamoxifen response
cluster (cluster 2), we generated three gene signatures of tamoxifen
resistance from genes upregulated in tamoxifen-resistant clusters
(Supplementary Table S7). Kaplan–Meier curves were plotted using
the survival R package. Statistical significance was assessed using
the log-rank test and defined as P < 0.05.
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Signature enrichment and clinical response to endocrine
therapy

To assess if enrichment of resistant cluster signatures were asso-
ciated with presurgical response to endocrine therapy, we obtain-
ed microarray gene expression data from the ACOSOG Z1031
(18, 46) trial (GSE136644), which randomized patients with stage
2 to 3 ERþ/HER2� breast cancer to preoperative aromatase inhib-
itor therapy with anastrozole, letrozole, or exemestane. No differ-
ence was seen in clinical efficacy between treatment arms and so
treatment arms were grouped. Response was assessed using the
authors’ validated endocrine response score (PEPI), in which a PEPI
score of 0 indicates a favorable response. Signature scores were
compared between samples with a PEPI score of 0 and those with a
PEPI score greater than 0, and statistical significance was assessed
using the Wilcoxon rank-sum test.

To determine enrichment of resistant cluster signatures in
endocrine therapy–resistant ERþ tumors, we obtained bulk
RNA-seq data from patients profiled on endocrine therapy (47).
Serial tissue biopsies were taken at diagnosis (pretreatment), after
2 to 4 weeks on treatment, and on treatment as feasible (median
biopsies, 3; range, 2–8). Clinical response was determined by
RECIST 1.1 criteria and follow-up to annotate each specific time-
point as “sensitive” or “resistant.” Centroid values (median expres-
sion of signature genes) for each of the three resistant signatures
were calculated for each sample. Signature scores were compared
between sensitive and resistant samples using violin plots and
statistical significance was determined using the Wilcoxon rank-
sum test.

Data availability
Raw data (10x FASTQs) and processed data for bulk and

scRNA-seq data have been deposited at the NIH Database of
Genotypes and Phenotypes (https://www.ncbi.nlm.nih.gov/gap/) and
are available under the accession number phs003186.v1.p1.

Code availability
All original code has been deposited on the Github and is publicly

available at the Github repository BC_tamoxifen_response
(https://github.com/hyunsoo77/BC_tamoxifen_response). Addi-
tional information regarding data analysis is available upon request
(Philip_Spanheimer@med.unc.edu).

Results
Clinical specimens

Studying the responsiveness of ERþ/luminal breast cancer cells to
tamoxifen in vivo is challenging due to features of stromal cells and
intratumoral heterogeneity. To address these challenges, we developed
a novel ex vivo system for short-term culturing coupled with scRNA-
seq. To demonstrate the platforms, two normal breast specimens were
obtained from patients undergoing reduction mammaplasty and 10
patients with clinically ERþ/HER2� treatment-na€�ve primary breast
tumors. Patient demographics and tumor characteristics are shown
in Table 1 and are representative of our patient population (Supple-
mentary Table S1). All tumors were strongly positive for ER and
negative for HER2. Ki67 positivity ranged from 7% to 35% and eight
tumors were luminal by bulk PAM50 subtype.

Characterization of normal breast cell populations
Two normal breast samples were obtained and processed (Fig. 1A).

In total, 13,175 single cells were identified after quality control and
annotated with canonical cell type markers (ref. 38; Fig. 1B and C).
When comparing the treatment conditions, there was strong cluster
overlap of control and tamoxifen-treated cells except in luminal
progenitor cells, indicating a more robust change in gene expression
with tamoxifen in that subpopulation.

Basal (KRT5/14) and luminal (KRT8/18) cytokeratins were
enriched in the expected compartments (Fig. 1D) demonstrating
robust classification of epithelial cell types. ESR1 transcripts encod-
ing ER were not detected in most cells including luminal epithelial
cells. FOXA1 was localized to mature and progenitor luminal
epithelial cells, consistent with existing literature. Cell type abun-
dance varied between the two specimens but not with tamoxifen
treatment (Fig. 1E).

To evaluate the effect of time in suspension, we compared an
immediate library from Normal_01 to the control suspension sample.
UMAP plots were used to visualize the data by cell type (Supplemen-
tary Fig. S1A). Cell type was the primary driver of clustering rather
than time in suspension (Supplementary Fig. S1B and S1C). Fewer cells
were sequenced after suspension, but no enrichment or depletion of
cell populationswas observed (Supplementary Fig. S1D).Differentially
regulated genes showed enrichment of inflammatory signaling path-
ways, epithelial–mesenchymal transition (EMT) genes, and genes

Table 1. Histologic data for two normal specimens and 10 tumor specimens.

Specimen ID Histology Race Age ER PR HER2 Grade Stage PAM50 Ki67

Normal_01 Normal White 20 — — — — — — —

Normal_02 Normal Black 22 — — — — — — —

Tumor_01 IDC Black 68 100% 95% 2þa 2 T1c N1a LumA 11%
Tumor_02 IDC Other 44 95% 65% 2þa 2 T3 N1a LumB 9%
Tumor_03 ILC White 51 95% 100% 1þ 3 T1c N0 LumA 14%
Tumor_04 IDC White 66 95% 8% 1þ 1 T1c N0 LumA 10%
Tumor_05 IDC White 59 90% 35% 2þa 1 T2 N0 LumA 10%
Tumor_06 ILC White 66 100% 2% 1þ 2 T3 N0 (iþ) LumA 7%
Tumor_07 IDC White 22 95% 80% 0 1 T2 N0 LumB 11%
Tumor_08 IDC Black 48 95% 60% 0 3 T2 N0 LumB 18%
Tumor_09 IDC White 44 90% 100% 0 3 T2 N1a Her2E 35%
Tumor_10 IDC White 71 100% 5% 0 2 T1c N0 Normal-like 12%

Note: The PAM50 molecular subtypes were determined by bulk RNA-seq profiles.
Abbreviations: IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma.
aFISH-negative for HER2 amplification.
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overlapping with estrogen response (Supplementary Fig. S1E; Sup-
plementary Table S2).

Cell type specific response to tamoxifen in normal breast tissue
To determine tamoxifen-induced gene-expression changes in the

distinct cell subpopulations that comprise normal human breast
tissue, we performed differential gene expression analysis by cell
type. Upregulated and downregulated genes with tamoxifen treat-
ment were identified separately for basal epithelial cells (BEp),
luminal progenitor cells (LEp_prog), and mature luminal cells
(LEp) (Supplementary Table S3). Overlap analysis showed the
majority of tamoxifen-regulated genes were cell type specific (Sup-
plementary Fig. S2). Common downregulated genes included cyto-
keratins KRT8, KRT15, and KRT19, and hallmark estrogen-
response genes including CCND1.

To determine differentially regulated pathways with tamoxifen
treatment by cell type, we performed enrichment analyses (Fig. 1F;
Supplementary Table S3). Luminal epithelial cells demonstrated
strong depletion of E2-induced and enrichment of E2-repressed
signatures, indicating capture of on-target effects of tamoxifen. Basal
epithelial cells demonstrated downregulation of E2-induced genes,
although less pronounced compared with luminal epithelial cells and
unchanged expression of E2-repressed genes. Fibroblasts did not
demonstrate signature enrichment with tamoxifen treatment. Endo-
thelial cells had enrichment of TNFa signaling and induction of
estrogen-repressed genes with tamoxifen, indicating a distinct
response relative to other cell types. Cumulatively, these findings show
that our novel system captures biological effects of tamoxifen treat-
ment in epithelial cells and detects cell populations (i.e., fibroblasts)
with differential cellular tamoxifen response. This demonstrates the
ability to distinguish heterogeneity in drug response within diverse cell
populations in primary human breast tissue.

Single-cell response to tamoxifen in T47D cells
Heterogeneity in gene expression and response to treatment occur

in distinct subpopulations, even within cell line cultures (48). To
elucidate heterogeneity in response to tamoxifen using our suspen-
sion-to-single-cell sequencing platform, we treated the ERþ/HER2�

breast cancer cell line T47D to recapitulate our human tissue protocol
(Fig. 2A). In bulk, T47D has a luminal B gene expression pattern (49).
Cells grouped primarily into two subpopulations: groupA (luminal A–
like) and a more proliferative groupB (luminal B–like) (Fig. 2B). Cell
clustering occurred primarily by cell type rather than treatment
condition (Fig. 2C).

Differentially expressed gene analysis identified 110 down-
regulated genes and 90 upregulated genes with tamoxifen treatment
(Supplementary Table S4). The downregulated genes were enriched
with canonical estrogen-induced genes and signatures of cell pro-
liferation (Fig. 2D). The upregulated genes were enriched for gene
signatures of androgen response and activation of the PI3K/mTOR
signaling pathway. We used the 110 downregulated genes (adjusted

P < 0.01), to establish a single-cell signature of tamoxifen response
(scTAM-response-T47D). As expected, canonical luminal epithelial
markers (KRT8, FOXA1, ESR1) were uniformly expressed, and the
proliferation score (38) was enriched in the groupB subpopulation
(Fig. 2E).

Cell type diversity in primary ERþ/HER2� human breast tumors
Ten tamoxifen/control pairs from primary breast tumors were

processed using our novel experimental platform. In total, 40,428
cells passed quality control andwere annotated using canonical lineage
markers (Fig. 3A). Epithelial cells were further classified into malig-
nant (Epi. Tumor) and nonmalignant (Epi. Nontumor) cells by
estimating the CNV profiles using InferCNV (36).

Cells clustered by cell type identity and not by specimen, indi-
cating high-quality sequencing. There was significant overlap of
fibroblasts, endothelial, and immune cells across samples, but not
epithelial cells (Fig. 3B). Malignant cells are visualized alone in
Supplementary Fig. S3A. Despite strong clinical ER positivity for
these tumors, ESR1 transcripts were zero in most tumor cells. This
could be due to discordance between transcript abundance and
protein levels, or more likely due to the depth of sequencing. The
ER-associated transcription factor FOXA1 was enriched in tumor
cells compared with nontumor epithelial and nonepithelial cell
types (Fig. 3C), and the significant majority of tumor cells were
assigned to the luminal PAM50 subtypes (Supplementary Fig. S3B),
supporting true ERþ identity for most cells.

Cell type abundance and the number of sequenced cells was
highly variable across samples (Supplementary Fig. S3B). The var-
iability in cell type abundance between samples supports the use of
single-cell assays to account for distinct cell subpopulations and
mitigate effects on downstream analyses. In most specimens, cell
type abundance was conserved between control and tamoxifen
treatment within samples, with three specimens (Tumor_05,
Tumor_06, and Tumor_09) showing increased ratio of luminal
B/luminal A cells with tamoxifen treatment.

Tumor-specific changes in estrogen-response genes
We leveraged the ability to computationally isolate tumor cells

using InferCNV to assess changes in three canonical early estrogen
response genes (CCND1, PGR, and GREB1; Fig. 3D) in only
malignant cells within tumors. Of note, the tamoxifen dose of
10 mmol/L is higher than circulating levels in patients treated with
tamoxifen, and so treatment conditions may be driving supra-
physiologic cellular responses. Of the 10 tumor pairs, six showed
a significant reduction in CCND1 expression with tamoxifen
treatment, although one (Tumor_08) showed increased CCND1
expression. Five tumors had a significant reduction in PGR (encod-
ing the progesterone receptor), and four tumors had reduced
GREB1 expression. Overall, this shows reduced expression of
estrogen-response genes after tamoxifen treatment in most of
these 10 tumors. We did not observe a reduction in Ki67

Figure 1.
Characterization of cell type specific response to tamoxifen in normal human breast tissue. A, Representation of the operating room to single-cell sequencing
workflow. The breast schematic was created using BioRender.com. B, UMAP plot of all scRNA-seq cells from two normal breast tissue samples. Cells were color-
coded by cell type. C, UMAP plot of scRNA-seq cells color coded by sample and treatment condition. D, Feature plots showing the expression of select epithelial
markers in normal breast cells. E, Bar chart comparing the total number of normal breast cells sequenced per treatment condition, color coded by cell type. F, Heat
map of gene sets enriched and depleted in differentially regulated genes in tamoxifen-treated cells relative to control cells by cell type, demonstrating distinct
biologic activity of tamoxifen in different cell compartments. Gene set enrichment was determined using enricher, and P values were reported after correction for
false discovery.
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expression in any tumor, which may be due to insufficient
treatment time or low abundance of Ki67 transcripts.

Variability in tamoxifen response between tumors
To determine tumor-specific tamoxifen response genes and to

assess response genes between tumors, we compared differentially
expressed genes in malignant cells (i.e., InferCNVþ; Supplementary
Fig. S3C). Upregulated and downregulated genes were highly variable
between samples. In general, samples with more downregulated genes
had more upregulated genes, which could be due to intrinsic respon-
siveness or the number of malignant cells sequenced and the power to
detect gene expression differences.

To assess variability in tumor-specific biological processes regulat-
ed by tamoxifen between patients, we assessed enrichment of gene
sets. With tamoxifen treatment, estrogen-induced genes (16) were
depleted in three tumors (Tumor_03, Tumor_05, and Tumor_09)
but enriched in four tumors (Tumor_01, Tumor_02, Tumor_06, and

Tumor_08; Fig. 3E). The upregulated genes in response to tamoxifen
were enriched in gene sets related to the androgen response, p53,
mTORC1 signaling, hypoxia, and apoptosis. MYC target genes and
GATA3-induced geneswere depleted in several tumorswith tamoxifen
treatment. The gene set for TNFa signaling was depleted in Tumor_05
and enriched in Tumor_06, highlighting the variability in tamoxifen-
mediated inflammatory signaling. To account for variability in
sequencing between bulk platforms and our single-cell system, we
assessed the previously defined scTAM-response-T47D signature,
which was depleted in four tumors. scTAM-response-T47D genes
were enriched in Tumor_09 which was classified as a HER2-
enriched bulk PAM50 subtype (Fig. 3E).

Targeted analysis of four tamoxifen-responsive tumors
To determine heterogeneity in cellular tamoxifen response within

specimens, we focused on the four tumors with depleted scTAM-
response-T47D signature. Cells were clustered to visualize cell

Figure 2.

T47D response to tamoxifen at a single-cell level. A, Illustration showing T47D scRNA-seq workflow. B, UMAP plot of T47D scRNA-seq cells color coded by
groupA (luminal A–like subpopulation) or groupB (luminal B–like subpopulation). C, UMAP plot of T47D scRNA-seq cells color coded by treatment condition.
D, Volcano plot showing enriched and depleted gene sets after tamoxifen treatment in T47D cells. Significant gene sets were defined as a gene ratio of
>0.125 and a log10 q value of <�4.5 or >4.5, and a thresholding limit of 10 was applied when log10 q value >10 for visualization. E, Feature plots showing
the expression of luminal epithelial markers and proliferation score in T47D cells.
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Figure 3.

Tamoxifen response in 10 primary ERþ/HER2� breast tumors. A,UMAP plot of all scRNA-seq cells from 10 breast tumor samples. Cells were color coded by cell type.
Malignant epithelial cells (Epi. Tumor) were distinguished from normal epithelial cells (Epi. Nontumor) by inferred copy-number changes using InferCNV. B, UMAP
plot of all cells color coded by tumor and treatment condition. C, Feature plots showing the expression of luminal epithelial markers and proliferation score. D, Box-
plots of early estrogen-response genes (CCND1, PGR, and GREB1) in the InferCNVþ malignant cells, comparing expression in control and tamoxifen-treated cells.
Significance was determined using the Wilcoxon rank-sum test � , P < 0.05; �� , P < 0.01. Sample PAM50 subtypes determined on bulk mRNA-seq are denoted by
the color code. E, Gene set enrichment heat map showing distinct tamoxifen response within InferCNVþ malignant cells across tumors.
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populations (Fig. 4A and B). In InferCNVþ malignant cells, top
tamoxifen-regulated genes were plotted (Fig. 4C; Supplementary
Table S5). Tamoxifen treatment was associated with depletion of
proliferation signatures and estrogen- and GATA3-induced signa-
tures (Fig. 4D), including ER-regulated genes (50) KRT7, CCND1,
and KRT8. Downregulation of MYC targets, including FKBP4 and
RANBP1 which alter ER-regulated genes, was observed with tamox-
ifen treatment (48, 51, 52).

Enrichment of several notable signatures was also observed among
malignant cells within these four tumors with tamoxifen treatment
(Fig. 4D; Supplementary Table S5). Signatures of EGFR and RAS (53)
signaling were enriched including MAPK signaling genes (MAPK6,
VEGFA, DUSP1, and DUSP10). The RAS–RAF–MAPK signaling
pathway is known to promote resistance to endocrine thera-
py (8, 47, 54, 55). PI3K/mTORC1 signaling (53), a targetable pathway
in patients with endocrine-resistant tumors (56), was also enriched in
tamoxifen-treated malignant cells. Genes associated with EMT (57)
and FOS/JUN signaling were also enriched (Supplementary Table S5)
and are associated with worse outcomes and poor response to endo-
crine therapy in breast cancer. Cumulatively, enriched pathways show
rapid adaptive upregulation of genes that may be driving a complex
early transcriptional program to promote resistance to endocrine
therapy.

To determine variability in tamoxifen response by cell type across
specimens, tamoxifen-regulated genes were identified in nonma-
lignant cell populations (Supplementary Table S6). In contrast
to malignant cells, fewer differentially regulated genes were seen
in fibroblasts and macrophages. Similar to malignant cells, RAS-
associated genes were enriched, but this was primarily due to
mitochondrial genes. Tamoxifen downregulated gene sets in malig-
nant cells and fibroblasts did not overlap. Macrophages demon-
strated downregulation of hallmark inflammatory response with
tamoxifen. Overlap analysis showed that the significant majority
of both up- and downregulated genes were unique to specific cell
types (Supplementary Fig. S4A and S4B).

These results demonstrate that distinct cell types within prim-
ary ERþ breast tumors have a unique response to tamoxifen. To
test if a single-cell signature of tamoxifen resistance (upregulated
genes with tamoxifen treatment) derived from only malignant cells
(scTAM-resistance-M; Supplementary Table S5) was prognostic
in ERþ/HER2� breast cancer patients treated with endocrine
therapy, survival annotated transcriptional data were obtained
from METABRIC (42) and SCAN-B (44). Patients were ranked by
median expression of the signature genes and stratified into “high” or
“low” groups and assessed with Kaplan–Meier curves. In both datasets,
overall survival was significantly worse with high expression of the
malignant cell-specific tamoxifen response signature (METABRIC: HR,
1.63; P ¼ 0.023; SCAN-B: HR, 2.94; P ¼ 0.002; Fig. 4E).

Characterization of resistant malignant cell subpopulations
Tomeasure heterogeneity in tamoxifen response in individual cells,

we developed a response score for individual cells using the single-cell
platform-derived scTAM-response-T47D signature. Each cell from
the four targeted analysis tumors was assigned a score as the difference
between the treated tumor cell’s centroid signature value and the
median centroid value for thematched, untreated tumor cells from the
same patient. This metric measures the deviation from the starting
state with tamoxifen treatment and can be quantified for each cell.
Differential response to tamoxifen was thus identified between clusters
(Fig. 5A). Cluster 2, composed primarily of LumA-like cells from
Tumor_06, displayed a significant reduction in scTAM-response-

T47D score, indicating cellular transcriptional response to treatment.
In contrast, clusters 3, 12, and 19 demonstrated increased scTAM-
response-T47D scores, indicating resistance to tamoxifen treatment
at the single-cell transcriptional level. Cluster 19 was the only
cluster composed of luminal B cells. In total, 13% of Tumor_03 was
composed of resistant cells, 6% of Tumor_05, 2% of Tumor_06, and
Tumor_08 was the only tumor in which the majority of cells (74%)
were from resistant subpopulations (Fig. 5B).

To determine features of these transcriptionally unresponsive sub-
populations, we identified differentially expressed genes for each of the
three clusters compared with the responsive cluster 2 (Supplementary
Fig. S5A; Supplementary Table S7). Clusters 3 and 12 were both
characterized by enrichment of RAS signaling pathways and EMT,
which can reduce estrogen responsiveness. Cluster 19 was character-
ized by high Ki67 and enrichment of proliferative signatures
(refs. 40, 58, 59; Supplementary Fig. S5B). Cell-cycle phase analysis
demonstrated that cluster 2 (sensitive) had the highest percentage of
nonproliferative (GO/G1) cells at 44.5% compared with cluster 3
(35%), cluster 12 (30%), and cluster 19 (0%). Highly proliferative cells
could indicate a population that was dividing or committed to dividing
during the short-term treatment, thus completing the cell cycle under
treatment rather than being truly “unresponsive.” Several reports have
demonstrated that high Ki67 is associated with worse outcome in
endocrine therapy-treated patients and that a reduction inKi67 is a key
clinical metric of response to endocrine therapy (18, 19, 60). Inter-
estingly, all three clusters had increased expression of TACSTD2
encoding TROP2, the target of the antibody–drug conjugate sacitu-
zumab govitecan, which has proven efficacy inmetastatic ERþ/HER2�

breast cancer (61). Therefore, all three clusters identified as resistant at
the cellular level had gene expression patterns of known mechanisms
of resistance to endocrine therapy and have increased expression of a
druggable target that could be used to deliver precision, subpopulation
specific therapy. These findings support the validity of this model to
identify differential response within tumor cell subpopulations and
identify potential treatment strategies.

To assess whether features of transcriptionally unresponsive sub-
populations are associated with poor outcomes, we analyzed
ERþ/HER2� patients treated with endocrine therapy in METABRIC
and SCAN-B. Resistant cluster signatures were generated for each of
the three clusters (Supplementary Table S7). Tumors were ranked by
median and tertile cutoffs and survival assessed by Kaplan–Meier
curves. The scTAM-resistance-C19 signature demonstrated the most
robust stratification for overall survival (Fig. 5D), with high score
corresponding to reduced survival in METABRIC (HR, 2.2; P < 0.001)
and in SCAN-B (HR, 1.9; P ¼ 0.002). High expression of the scTAM-
resistance-C3 signature was significantly associated with reduced
overall survival in SCAN-B (HR, 2.2; P ¼ 0.03) but not METABRIC.
Similarly, high expression of the scTAM-resistance-C12 signature was
associated with reduced survival only in SCAN-B (HR, 1.9; P¼ 0.003;
Supplementary Fig. S6A).

To determine whether the enrichment of tamoxifen-resistant
cluster signatures is associatedwith clinical response in patients treated
with endocrine therapy, we obtained two presurgical or unresectable
datasets. The ACOSOG Z1031 (18, 46) trial treated patients with
stage 2 to 3 ERþ/HER2� breast cancer with preoperative aromatase
inhibitor therapy and evaluated response by their validated PEPI
score. Patients with a PEPI score of 0 (good response) had lower
pretreatment expression of scTAM-resistance-C19 signature
compared with a PEPI score greater than 0 (�0.15 vs. 0.01; P ¼
0.043). No enrichment of signatures for clusters 3 and 12 based
on PEPI score (Supplementary Fig. S6B). Finally, we obtained
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Figure 4.

Targeted analysis of four tamoxifen-responsive tumor pairs. A, UMAP plot of scRNA-seq cells from four tumors that demonstrated depletion of scTAM-
response-T47D signature. Cells are color coded by cell type. B, UMAP plot of scRNA-seq cells from four tumor pairs, color coded by tumor and treatment
condition. C, Heat map of upregulated and downregulated gene sets in tamoxifen-treated tumor cells relative to control cells. D, Volcano plot showing
enriched and depleted gene sets after tamoxifen treatment in malignant cells from 4 ERþ/HER2� tumor pairs. Significant gene sets were defined as a gene
ratio of > 0.085 and a log10 q value of <�10 or > 10 for visualization. E, Kaplan–Meier (KM) curve for overall survival using two independent clinically annotated
datasets with transcriptional data. ERþ/HER2� patients treated with endocrine therapy were assigned a centroid score of our malignant cell-specific
tamoxifen resistance signature (scTAM-resistance-M) and stratified by high and low score. High signature score is associated with significantly worse overall
survival in patients in METABRIC (HR, 1.63; P ¼ 0.023) and SCAN-B (HR, 2.94; P ¼ 0.002). Statistical significance was assessed by the log-rank test and
the estimates of survival probabilities and cumulative hazard with a univariate Cox proportional hazards model.
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bulk RNA-seq data from patients with ERþ/HER2� breast cancer
profiled on treatment with endocrine therapy (47). Clinically
resistant tumors had significantly higher expression for all three
resistant signatures relative to sensitive tumors (�0.11 vs. 0.16 for
cluster 3; P ¼ 0.00037; �0.12 vs. 0.21 for cluster 12; P ¼ 0.00081;
�0.12 vs. 0.26 for cluster 19; P ¼ 0.00031; Fig. 5E).

Discussion
Assessing heterogeneity in response to therapy within primary

human solid organ tumors represents a significant challenge. For the
first time, we report the use of single-cell transcriptional profiling
coupled to a primary human tumor ex vivo experimental platform to
dissect drug response within and across tumors. Using this platform,
this study identified and characterized distinct responses to tamoxifen
within normal human breast tissue and primary ERþ/HER2� human
breast tumors. The ability to successfully distinguish differential
response has several important implications. First, it allows for
computational analysis of distinct cell populations, such as malignant
cells, which can be used to derive more precise signatures of tran-
scriptional response. This could be especially important in lobular
breast cancers and other solid organ tumors with variable malignant
and stromal compositions. Herein, we generated signatures from
computationally identified tumor cells and showed that these were
associated with prognosis and response to therapy across multiple
large datasets.

We have additionally shown the ability to assess differential
sensitivity to therapy by measuring gene-expression changes within
malignant cells of the same tumor. In some tumors, resistance to
therapy may be driven by low-abundance cell populations that are
masked in bulk sequencing. Importantly, we identified three low-
abundance cell populations that are unresponsive to tamoxifen.
These resistant cells were identified within tumors that would have
been classified as responsive (depleted E2-induced genes) at the
tumor level. Thus, the ability to distinguish these cell populations
may unmask hidden resistant cell populations. Supporting the
accuracy of this characterization, all three populations had features
of described mechanisms of resistance to endocrine therapy and
were enriched in endocrine resistant tumors. Interestingly, these
subpopulations all had increased expression of TROP2, the target of
the antibody–drug conjugate sacituzumab govitecan. The presence
of these low-abundance tamoxifen-resistant cells could identify
patients in whom a precision medicine dual treatment strategy
targeting specific tumor subpopulations is more efficacious than
endocrine therapy alone. Further study is needed to develop clin-
ically actionable strategies based on precise characterization of
tumor cell subpopulation vulnerabilities.

Studying drug response on pre- and posttreatment specimens
at the single-cell level from patients may be more directly relevant

as in vivo cellular response may not mirror ex vivo response.
Processing tumor cells may alter response, and in vitro doses may
not mirror circulating and intratumor levels. An ideal validation
experiment would obtain a pretreatment biopsy and assay using
our platform at a range of tamoxifen doses. The patient would also
undergo treatment with tamoxifen and single-cell libraries gen-
erated from pre-/posttreatment specimens. This would allow
direct comparison of patient response, ex vivo response, and
optimization of ex vivo doses to reproduce a representative
response. There are several advantages to an ex vivo model. First,
experiments in patients are more expensive and take longer to
generate results. Next, our ex vivo primary tumor model allows for
experiments that may be impractical or unethical in humans such
as genetic perturbations and investigational drugs. Finally, this
model could allow rapid parallel testing of multiple therapeutics to
assess differential sensitivities and empirically optimize treatment
strategies.

We recognize that our study has several limitations. The resis-
tance analysis was done on cells from four patients, which is a small
sample size with limited power for subgroup analysis based on
menopausal status or ductal/lobular histology. Further, in vitro
doses of 4-OH tamoxifen and estradiol used in this study are higher
than circulating levels in patients, which could alter our measure-
ment of response and could mask subtle transcriptional differences
within tumor cell subpopulations. These doses may be especially
relevant in postmenopausal women from whom most of our tumor
samples were obtained. In contrast, normal samples were obtained
from women in their 20s, which may limit the ability to compare
tumor and normal samples in our study. In addition, the analysis of
resistant cell populations was based on cells from tumors that were
determined to be sensitive to tamoxifen as measured by depletion of
a platform-matched T47D derived signature, which may limit the
ability to characterize resistant populations. Signatures of resistant
cells were assessed using existing clinically annotated bulk sequenc-
ing data, which indicates relevance in patients but does not directly
validate these findings. Further study is needed to determine pre-
cisely how low-abundance resistant subpopulations are associated
with risk of recurrence, such as longitudinal follow-up to determine
if the presence of resistant subpopulations corresponds with the
risk of recurrence. Ideally, this would be done with analysis of
recurrent tissue samples to directly assess if recurrences originate
from resistant subpopulations. Nevertheless, this work represents
the first model system to annotate distinct treatment responses
within individual cells of primary human breast tumors and offer a
treatment target for resistant cells.

In conclusion, we present a novel ex vivo drug treatment platform
coupled to scRNA-seq for human breast tumors. Through this plat-
form, we identified distinctions in cellular response of subpopulations
in normal human breast tissue and primary human tumors. Several

Figure 5.
Identification and characterization of resistant tumor cell subpopulations in four tamoxifen-responsive tumor pairs.A, Individual cells were assigned a score from the
T47D tamoxifen response signature compared with cluster matched untreated score. Application of response score to UMAP plot demonstrated three distinct
clusters with enriched signature score on treatment (cluster 3, 12, 19) and one tamoxifen-sensitive cluster with depletion of response score (cluster 2). B,Abundance
of cells from resistant clusters in each of the four tumors. C, Stacked bar chart showing distribution of cells within 22 distinct clusters, color coded by tumor and
treatment condition. D, Kaplan–Meier (KM) curve of the cluster 19 signature (scTAM-resistance-C19), using ERþ/HER2� patients that received endocrine therapy
fromMETABRIC. Higher signature score predicted worse overall survival (HR, 2.17; P < 0.001). Survival curve differenceswere calculated by the log-rank test and the
estimates of survival probabilities and cumulative hazard with a univariate Cox proportional hazards model. E,We obtained data of clinically annotated endocrine
therapy sensitive and resistant tumors from Xia and colleagues (47). All three tamoxifen resistance signatures were enriched in resistant tumors compared with
sensitive. Significance was determined using the Wilcoxon rank-sum test, ��� , P < 0.001.
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mechanisms of resistance to tamoxifen were identified in resistant
malignant cell subpopulations within human tumors, and signatures
of those subpopulations predicted poor outcomes in patients with
ERþ/HER2� breast tumors. Further studies are needed to determine
clinically actionable strategies to identify patients at risk for thera-
peutic failure based on the presence of low-abundance drug-resistant
subpopulations and determine cotreatment strategies to overcome
resistance.
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