Best of ASH 2018: Myeloma

Brandi Reeves, MD

Assistant Professor

Division of Hematology-Oncology

University of North Carolina

1/23/2019

Learning Objectives

- Understand the preferred frontline treatment options in NDMM in the US and recognize ongoing clinical trials with daratumumab in this setting
- \bullet Review the data challenging upfront ASCT in NDMM
- Review the role of ixazomib in myeloma maintenance therapy
- Recognize BCMA as an important new target in the treatment of multiple myeloma

Learning Objective 1: Triplet therapy is SOC for NDMM in 2019

- Which triplet is debatable
- Holds true for both transplant-eligible and –ineligible pts
- The addition of monoclonal antibody daratumumab to triplet backbones is being studied, but results are not mature

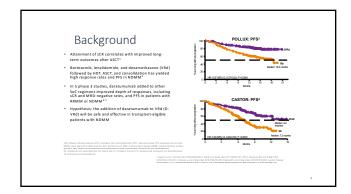
Reference: Rajkumar, SV, "Selection of initial chemotherapy for symptomatic multiple myeloma." UpToDate.com 1/3/2019. https://www.uptodate.com/contents/selection-of-initial-chemotherapy-for-symptomatic-multiple-myeloma

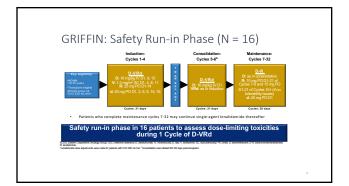
Top 5 Picks for MM

- Newly diagnosed

 - Griffin: Dara-RVd in transplant eligible (abstract 151)
 MAIA: Dara-Rd in transplant ineligible (abstract LBA-2)
 Forte: KRd ASCT vs KRD 12 vs KCd-ASCT in transplant eligible (abstract 121)
- Maintenance
 - Tourmaline-MM3: Ixazomib vs placebo (abstract 301)
- Relapsed and Refractory
 - AMG 420: BCMA BiTE (abstract 1010)

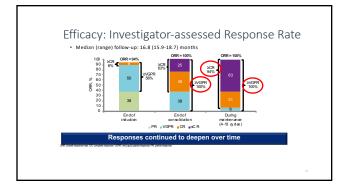
ASH abstracts are published in: Blood 2018 132

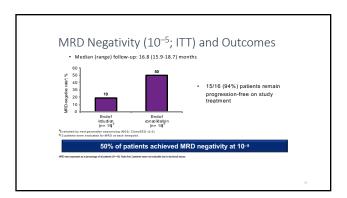

Griffin: Dara-VRd in Newly Dx'd MM Eligible for Transplant (Abstract 151)


- Safety run-in cohort of 16 pts

Blood 2018 132:151

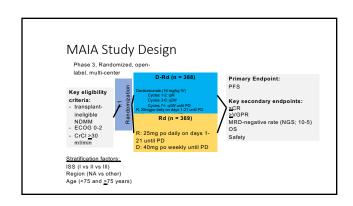
Daratumumab Efficacy

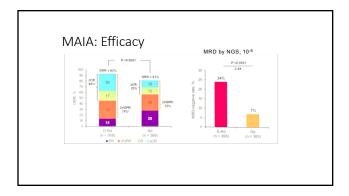

$\overline{}$			
$\overline{}$			
•			

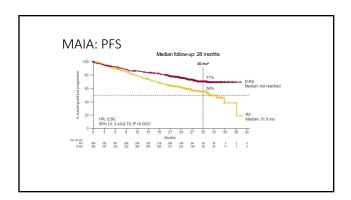


Demographics and Disease Characteristics Characteristic Median (pargol jags, years (£2 (46/65)) Mide, n (%) Rece, n (%) Billion Affician American 4 (25) Asian 1 (6) ECOC performance status, n (%) 0 ECOC performance status, n (%) 1 (80) 1 (80) 1 (80) 2 (80) 2 (80) 2 (80) 3 (10) 2 (80) 3 (10) 3 (10) 3 (10) 2 (10) 3 (10) 4 (10) 3 (10) 3 (10) 4 (10) 4 (10) 5 (10) 4 (1

			n TEAEs			
Hematologic TEAEs, n (%)	Any grade	Grade 3 or 4	Nonhematologic TE	EAEs, n (%)	Any grade	Grade 3 or 4
Neutropenia	12 (75)	5 (31)6	Diarrhea		9 (56)	1 (6)
Febrile neutropenia	2 (13)	2 (13)	Fatigue		9 (56)	1 (6)
Lymphopenia 12 (75) 3 (19)			Hypocalcemia		8 (50)	1 (6)
111011b0Cytoperia 8 (00) 4 (20)			Constipation		8 (50)	0
Leukopenia 8 (50) 2 (13)			Nausea Vomiting		6 (38) 6 (38)	0
Anemia 7 (44) 1 (6)			Peripheral edema		6 (38)	0
			Pyrexia		6 (38)	ő
TEAEs occurred in all	16 patients		Upper respiratory tra	ct infection	6 (38)	0
 TEAEs related to da 	and and and and	umod in 46	Hypokalemia		6 (38)	0
patients (94%)	raturiumab occ	uneu in 15	Cough		5 (31)	0
 Grade 3 or 4 TEAEs or 	courred in 14	nationte (88%)	Hypoalbuminemia		5 (31)	0
 Grade 3 or 4 TEAEs related to daratumumah^c 			Hypomagnesemia		5 (31)	0
occurred in 10 patients (63%)			Insomnia		5 (31)	0
			Pain in extremity		5 (31)	0
✓ No one stopp	oed trea	tment for	AE.	suropathy	5 (31)	0
					4 (25) 4 (25)	4 (25) 2 (13)
✓ Stem cell col	llection v	vas not ir	npacted		4 (25)	2(13)
by addition of			•		4 (20)	2(13)

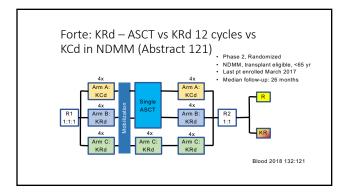

Griffin: Summary - Addition of daratumumab to VRd backbone in transplant-eligible pts w/NDMM has impressive response rates and deep responses • The Phase 2 randomized trial of D-VRd vs VRd is closed to accrual (N=222) – await those results • Daratumuamb approved as front-line therapy in combination with VMP, but not yet with VRd. Top 5 Picks for MM Newly diagnosed Griffin: Dara-RVd in transplant eligible (abstract 151) MAIA: Dara-Rd in transplant ineligible (abstract LBA-2) • Forte: KRd – ASCT vs KRD 12 vs KCd-ASCT in transplant eligible (abstract 121) Maintenance • Tourmaline-MM3: Ixazomib vs placebo (abstract 301) Relapsed and Refractory AMG 420: BCMA BiTE (abstract 1010) ASH abstracts are published in: Blood 2018 132 MAIA: Phase 3 Randomized Study of D-Rd vs Rd in Newly Dx'd MM Ineligible for Transplant (Abstract LBA-2)1 Pre-specified interim analysis FIRST trial: Rd significantly prolonged PFS vs MPT in transplant-ineligible NDMM (26.0 vs 21.9 months)²

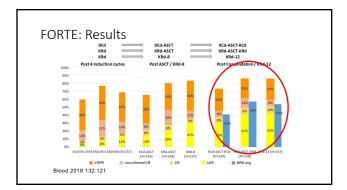

Triplet regimens have consistently shown deeper responses and better PFS
 Does the addition of daratumumab improve PFS and responses in NDMM?


1 - Facon T, Kumar SK, Plesner T, et al. Phase 3 randomized study of daratumumab plus lenationnide and dexamethacone (D-Rd) versus lenationnide and dexamethacone (D-Rd) versus lenationnide and dexamethacone (D-Rd) in patients with newly disprosed multiple imprioran (DMM) registed for transplant (MAM). Abstract #LBA-2. Presented at the 2018 ASH Annual Meeting.

December 4, 2018; San Disec, CA. 11. Transplant (MAM). Abstract #LBA-2. Presented at the 2018 ASH Annual Meeting.

21. Transplant (MAM). Transplant (MAM). Abstract #LBA-2. Presented at the 2018 ASH Annual Meeting.




MAIA: Summary Triplets continue to be better than doublets in MM How does DRd compare to VRd? SVMCS SD777: Phase 3, VRd vs fail in NDMM without intent for immediate SCP - FFS incombit, VRd 41 s vs fail 30 - CS (months); VRd 41 s vs fail 30 - CS (months); VRd 41 s vs fail 61 - Rd 17 c vs fail 64 - Rd 18 c vs fail 64 Should DRd be the new SOC for transplant-ineligible NDMM? I await more mature results and a direct comparison of regimens Note: Daratumsmah is not yet FDN-approved for frontline treatment of NDMM except in combination with VMP. ¹Lancet. 2017 Feb 4;389(10068):519-527. ²Br J Haematol. 2018 Jul;182(2):222-230. Learning Objective 2: ASCT should still be considered in frontline treatment of NDMM • ASCT has shown improved depth of response and PFS • OS benefit remains of debate: IFM2009 trial showed better PFS with upfront vs delayed ASCT, but comparable OS – short follow-up as yet • Ongoing US Trial: Determination (DFCI 10-106) - VRd - ASCT lenalidomide maintenance Blood. 2018 Dec 26. pii: blood-2018-08-825349 Top 5 Picks for MM Newly diagnosed Griffin: Dara-RVd in transplant eligible (abstract 151) MAIA: Dara-Rd in transplant ineligible (abstract LBA-2) • Forte: KRd – ASCT vs KRD 12 vs KCd-ASCT in transplant eligible (abstract 121) Maintenance

• Tourmaline-MM3: Ixazomib vs placebo (abstract 301)

• Relapsed and Refractory

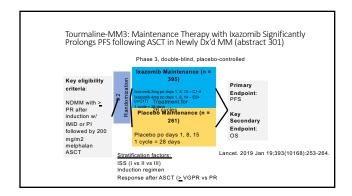
AMG 420: BCMA BiTE (abstract 1010)
ASH abstracts are published in: Blood 2018 132

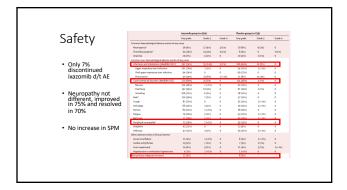
Forte: Safety • Discontinuation for AEs similar in the 3 arms • KRd-ASCT: 6% • KRd12: 8% • KCd-ASCT: 7%

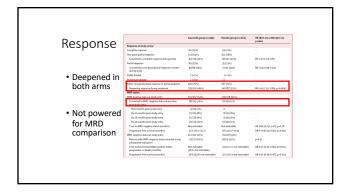
Forte: Summary • At completion of consolidation, KRd regimens vs KCd-ASCT-KCd had improved >VGPR rates, 89% vs 76% Improved MRD negative rates, 56% vs 42% (statistically significant) Second generation flow cytometry, 10-5 sensitivity • Maintenance data are not mature • When feasible, use lenalidomide over cyclophosphamide • High-dose melphalan with ASCT is still the standard of care, but I await results of DETERMINATION (RVd with either upfront or delayed ASCT) and FORTE for OS data and factors that influence response to ASCT Learning Objective 3: Lenalidomide maintenance after ASCT in standard-risk disease remains the SOC • Lenalidomide maintenance has shown improved PFS and OS over placebo (53 vs 24 months; 62% vs 50% at 7 years) in standard-risk MM • For high-risk MM, bortezomib is considered over lenalidomide, however, there is no trial comparing these head-to-head. Rajkumar SV. "Autologous hematopoietic cell transplantation in multiple myeloma." UpToDate.com 1/3/2019. https://www.uptodate.com/contents/autologous-hematopoietic-cell-transplantation-in-multiple-myeloma/sectionName=MAINTENANCE&topicRef=6643&anchor=H13&source=see_link#H14 Top 5 Picks for MM

• Maintenance

Newly diagnosed


• Tourmaline-MM3: Ixazomib vs placebo (abstract 301)


• Forte: KRd – ASCT vs KRD 12 vs KCd-ASCT in transplant eligible (abstract 121)


Griffin: Dara-RVd in transplant eligible (abstract 151)
 MAIA: Dara-Rd in transplant ineligible (abstract LBA-2)


- Relapsed and Refractory
 - AMG 420: BCMA BiTE (abstract 1010)

ASH abstracts are published in: Blood 2018 132

How does this compare to lenalidomide maintenance?

- IFM 2005-02 study¹: Len until progression vs placebo • PFS: 41 vs 23 months
- CALGB 1001042: Len until progression vs placebo • PFS: 46 vs 27 months

¹N Engl J Med. 2012 May 10;366(19):1782-91. ²N Engl J Med. 2012; 366: 1770-1781

Tourmaline-MM3: Summary

- Ixazomib vs placebo resulted in 5 months additional PFS
- · Good safety profile
- I would not use this in place of lenalidomide for maintenance at this time
- Await results of ongoing studies of ixazomib and lenalidomide in combination or alone, in high-risk patients, and in an alternating strategy

Top 5 Picks for MM

- Newly diagnosed

 - Griffin: Dara-RVd in transplant eligible (abstract 151)
 MAIA: Dara-Rd in transplant ineligible (abstract LBA-2)
 - Forte: KRd ASCT vs KRD 12 vs KCd-ASCT in transplant eligible (abstract 121)
- Maintenance
 - Tourmaline-MM3: Ixazomib vs placebo (abstract 301)
- Relapsed and Refractory
 AMG 420: BCMA BiTE (abstract 1010)
 ASH abstracts are published in: Blood 2018 132

AMG 420 anti-BCMA BiTE (abstract 1010)

- B-cell Maturation Antigen (BCMA) is expressed on multiple myeloma cells, plasma cells, and mature B-cells
- AMG 420 is a mAb for CD3 joined by a flexible linker to mAb for BCMA
- T-cell mediated lysis of BCMA+ cells

Note: this is not AMG 420, but a general representation of BiTE Cancer Cell. 2017 Mar 13;31(3):396-410

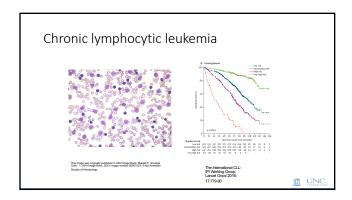
AMG 420

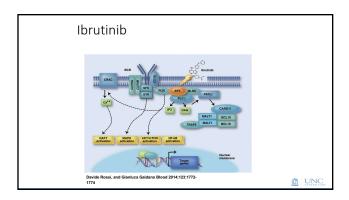
- Phase 1, First-in-human dose escalation study
- RRMM with progression after >2 prior lines of treatment (including PI and IMiD)
- Tx for up to 5 cycles or PD, 5 additional cycles could be given
- 35 pts received drug as of May 2018

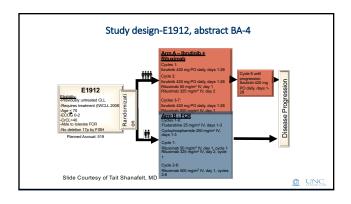
AMG 420 anti-BCMA BiTE (1010) 400 ug/day was MTD – CRS and polyneuropathy at 800 ug/day 7/10 pts in 400 ug/day group responded 4/10 were MRD-negative sCR 6/10 pts still responding at 7.5 months 100 150 Days since first AMG 420

AMG 420: Summary

- BCMA has been a good target in myeloma
 - mAb-drug conjugates
 CAR-T

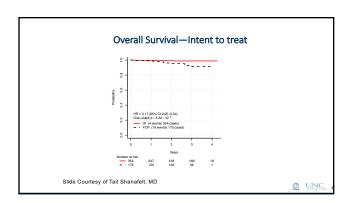

 - BiTE
- This construct showed very promising results, and would potentially offer "off-the-shelf" option for tx, rather than the wait time for CAR-T
- FDA granted "Fast Track" designation

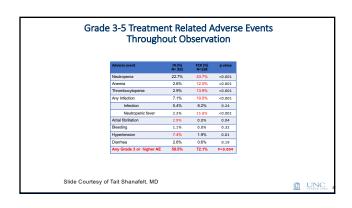

Final Summary

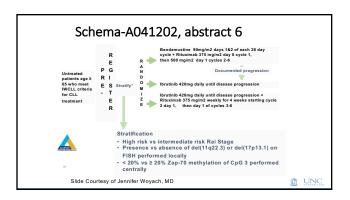

None of these data are as yet practice-changing in my opinion, but the mature data over the next few years will inform practice

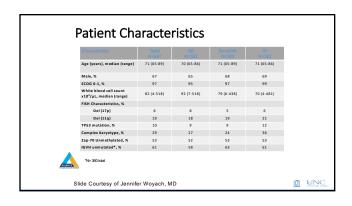
Brandi_Reeves@med.unc.edu

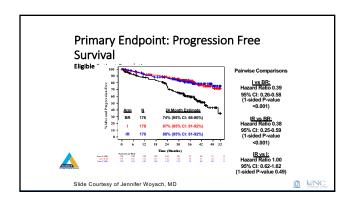
Best of ASH 2018Leukemia
Best of ASH 2018Leukerilla Matthew Foster, MD
25 January 2019
QUINC CANCER CARE
CANCER CARE UNC
Outline
I. Chronic Lymphocytic Leukemia
II. Lower Risk MDS III. AML in older adults
Alle in ode. ceals
<u> </u>
Outline
Chronic Lymphocytic Leukemia Lower Risk MDS
III. AML in older adults
<u>unc</u>
AND CANCER CA

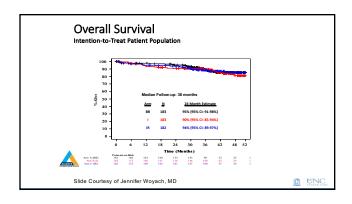


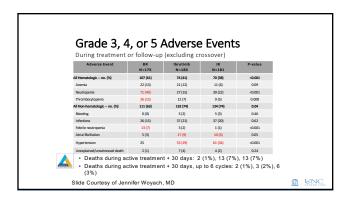


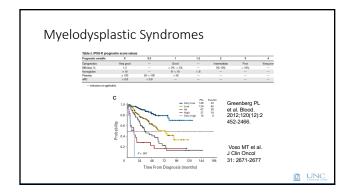


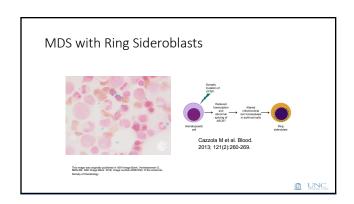

Baseline characte	ristics	IR n=354	FCR n=175	Total
Median age (y)		58	57	58
Age ≥ 60		41.0%	40.0%	40.6%
Female		33.3%	31.4%	32.7%
ECOG = 0		63.8%	62.3%	63.3%
Rai stage 0		3.1%	5.1%	3.8%
Rai stage I-II	-		53.7%	53.1%
Rai stage III-IV		44.1%	41.1%	43.1%
FISH	11q deletion	22.0%	22.3%	22.2%
	Trisomy 12	19.8%	15.4%	18.3%
	13q deletion	34.2%	33.1%	33.8
B2M >3.5 mg/L		51.9%	48.0%	50.6%
IGHV Unmutated*		75.0%	61.7%	71.1%

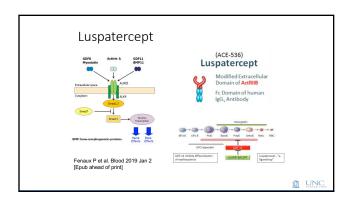


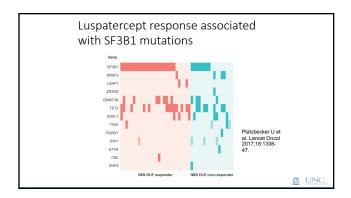


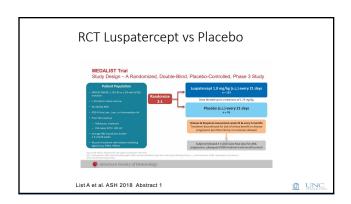


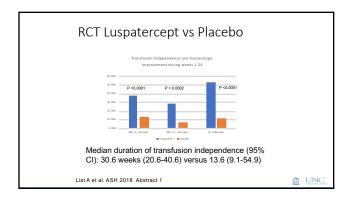









Outline I. Chronic Lymphocytic Leukemia II. Lower Risk MDS III. AML in older adults



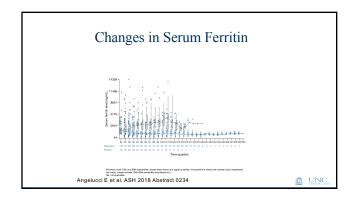
Iron overload in MDS

Hoffbrand AV et al. Blood. 2012; 120(18): 3657-

- Each unit of blood has 200-250 mg iron.
 Annual intake of excess iron for 2-4 units/month: 5-10 grams
 MDS patients with longer life expectancy who get >20-30 units and elevated ferritin previously recommended for chelation
 Previously unknown if benefits of chelation outweigh risks

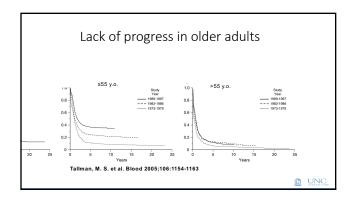
Deferasirox vs placebo in lower risk MDS

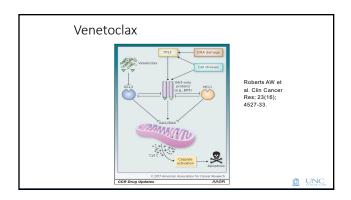
Eligibility:

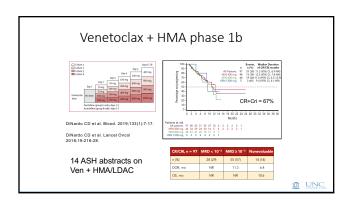

- IPSS low/Intermediate-1 MDS
- Ferritin >1000 ng/mL
- Transfusion history: 15-75 units RBC
- No cardiac or hepatic abnormalities

Composite Primary Endpont: Event-Free Survival (by independent review)

- · Cardiac events
- Hepatic events
- Transformation to AML


Angelucci E et al. ASH 2018 Abstract 0234


-	T. Th. Total
шл	



Outline	
Chronic Lymphocytic Leukemia Lower Risk MDS AML in older adults	
	<u> </u>

