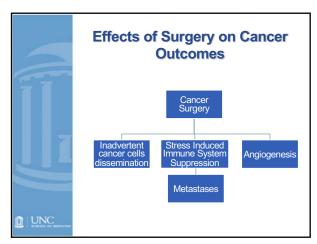
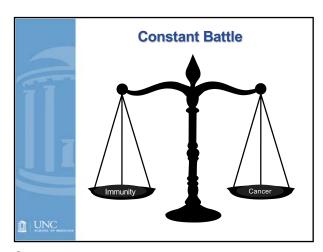
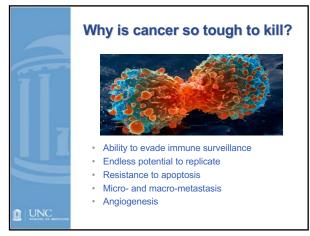


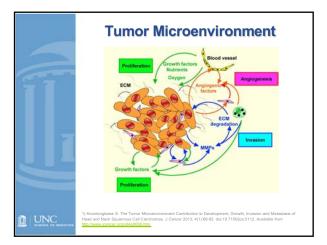
Objectives

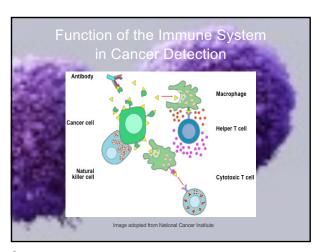

- Discuss effects of perioperative stress on cellular function and cancer outcomes
- Describe effects of general anesthesia on cancer outcomes
- Discuss the effects of neuraxial analgesia on cancer recurrence and mortality as pertaining to various malignancies

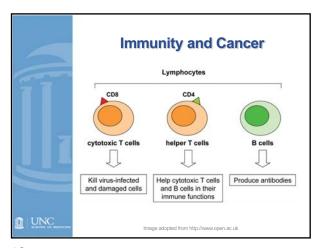
2

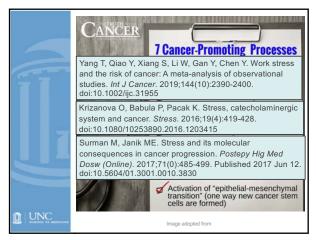


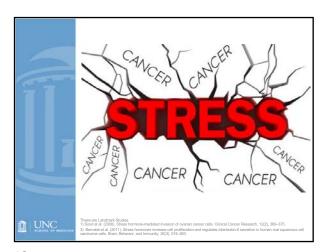


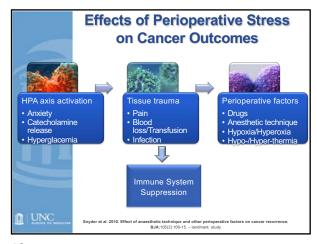

Δ

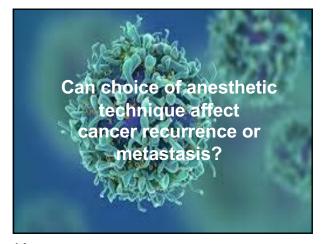


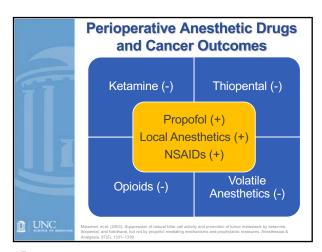

5





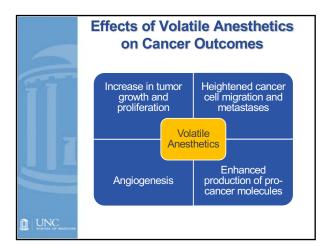






Effects of Opioids on Cancer Outcomes

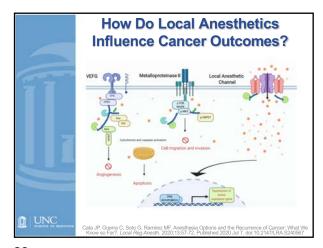
- Meserve et al. (2014). The role of analgesics in cancer propagation. Best Practice & Research Clinical Anaesthesiology, 28(2), 139–151.
- Ma et al. Morphine enhances renal cell carcinoma aggressiveness through promotes surviving level. Ren Fail. 2017 Nov;39(1):258-264
- Cao et al. Morphine, a potential antagonist of cisplatin cytotoxicity, inhibits cisplatin-induced apoptosis and suppression of tumor growth in nasopharyngeal carcinoma xenografts. Sci Rep. 2016 Jan 5;6:18706.
- Nguyen et al. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer. British Journal of Anaesthesia. 2014;113(Suppl 1):4–13.


16

Effects of Volatile Anesthetics on Cancer Outcomes

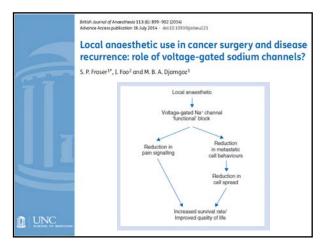
- Tazawa at al. The effect of different anesthetics on tumor cytotoxicity by natural killer cells. Toxicol Lett. 2017 Jan 15:266:23-31.
- Zhang et al. Isoflurane promotes non-small cell lung cancer malignancy by activating the Akt-Mammalian Target of Rapamycin (m-TOR) signaling pathway. Med Sci Monit. 2016 Nov 29;22:4644-4650.
- Iwasaki et al. Volatile anaesthetics enhance the metastasis related cellular signalling including CXCR2 of ovarian cancer cells. Oncotarget. 2016 May 3;7(18):26042-56
- Benzonana et al. Isoflurane, a commonly used volatile anesthetic, enhances renal cancer growth and malignant potential via the hypoxia inducible factor cellular signaling pathway in vitro. Anesthesiology. 2013 Sep;119(3):593-605.

17



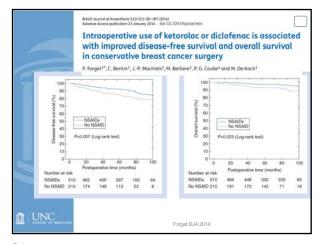
Local Anesthetics:

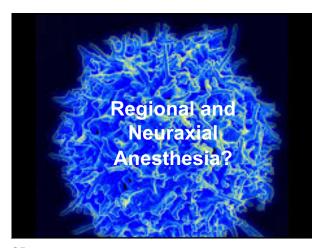
- potentiate cytotoxicity of the natural killer cells
- facilitate antigen presentation
- modulate function of neutrophils, macrophages, and dendritic cells


Cata JP, Guerra C, Soto G, Ramirez MF. Anesthesia Options and the Recurrence of Cancer: What We Know so Far?. *Local Reg Anesth.* 2020;13:57-72. Published 2020 Jul 7. doi:10.2147/LRA.S240567

19

20

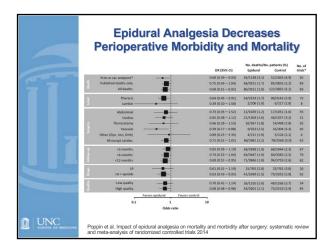


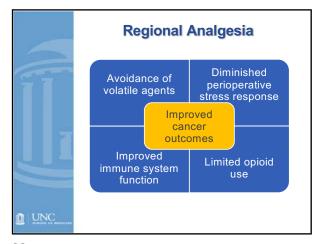

NSAIDS Improve Cancer Outcomes

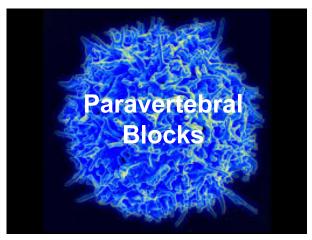
- Chronic aspirin use decreases risk of colon cancer
- COX 2 enzyme tumor overexpression
- · COX-2 inhibitors induce tumor cell apoptosis
- COX-2 inhibitors improve response to chemotherapy in lung cancer
- Ketorolac and diclofenac improve disease free survival in breast cancer
- NSAIDs appear to improve disease free survival and overall survival after cancer surgery

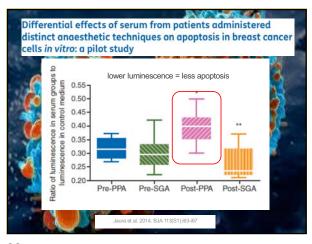
Hou et al. BJ of Clinical Pharm, 2015

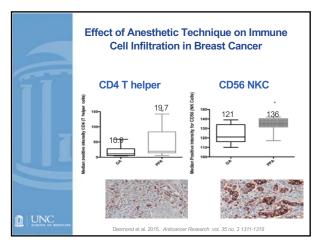
23

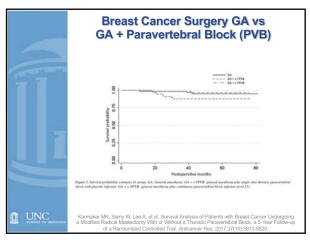


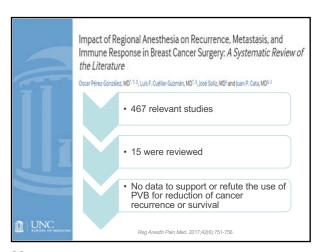

Benefits of epidural analgesia

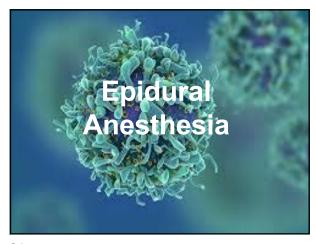

- · Improved peri-opertive pain control
- · Better functional recovery
- · Decreased stress response
- Inhibition of catecholamine release results in decreased cardiac O2 demand
- Decreased risk of vascular thrombosis/PE
- Reduced incidence of post-op infections and improved wound healing
- Decreased catabolic state resulting in improved glucose control and decreased protein catabolism

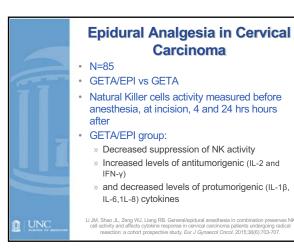

Rodgers A, Walker N, Schug S, et al. Reduction of postoperative mortality and morbidity with epidural or spinal anesthesia: results from overview of randomized trials. BMJ. 2000;321:1493 – Landmark

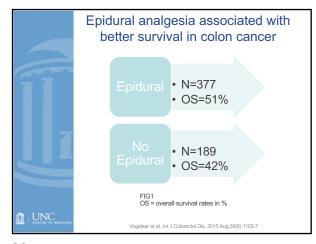

26

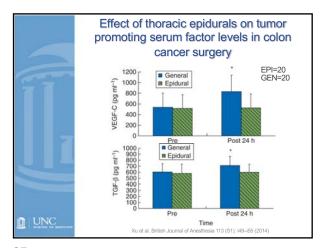


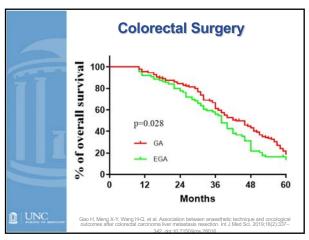


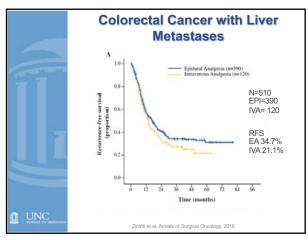


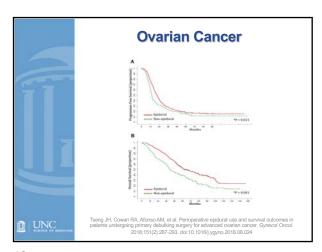


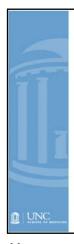











Type of Cancer	Author (Year)	Type of Study	Intervention	Overall Survival	Recurrence-Free Survi		
Colorectal	Cummings (2012) ⁸¹	Retrospective	EA-GA vs GA	No difference	Increased with GA-EA		
Colorectal	Gottschalk (2010)*1	Astrospective	EA-GA vs GA	Not studied	No difference		
Colorectal	Gupta (2011) ⁴⁷	Retrospective	EA-GA vs Spirul vs GA	increased for rectal cancer, no difference for colon cancer	Not studied		
Colorectal	Day (2012)**	Retrospective	EA-GA vs Spinal vs GA	No difference	No difference		
Colorectal	Kim (2016) ⁶¹	ACT	LA wound infibration vs IMPCA	Not studied	No difference		
Colorectal liver metastasis	Zimericzi (2014) ⁶⁴	Retrospective	EA-GA vs GA	No difference	Increased with EA-GA		
Colorectal liver	Gao (2019) ⁴⁷	Retrospective	EA-GA vs GA	Not studed	Increased with GA		

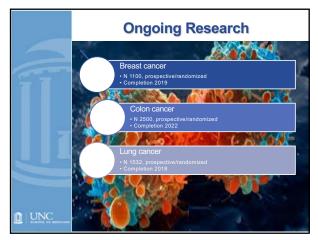
	Else of the	1,000	1990		A TOTAL STATE OF	
ype of Cancer	Author (Year)	Type of Study	Intervention	Overall Survival	Recurrence-Free Survival	
Ovarian	De Oliveira (2011) ⁷⁹	Retrospective	EA (incra and postop)-GA vs Postop-only EA vs IVPCA	Not studied	Increased with EA-GA	
Pvarian	Lin (2011) ⁸⁰	Retrospective	EA vs GA-IVPCA	Increased with EA	Not studied	
Ovarian	Capmas (2012) ⁸¹	Retrospective	EA vs No EA	No difference	No difference	
Ovarian	Lacassie (2013) ⁸²	Retrospective	EA vs No EA	No difference	No difference	
Ovarian	Tseng (2018) ⁸³	Retrospective	EA vs IV-PCA	Increased with EA	Increased with EA	
Ovarian	Zhong (2019) ⁸⁴	Retrospective	EA vs GA-IVPCA	No difference	Not studied	
Ovarian	Elias (2015) ⁸⁵	Retrospective	EA-GA vs GA	Not studied	No difference	

Prostate cancer

- Lee et al. Pain Management. 2015
- Meta-analysis
- 10 retrospective studies
- GA 6261/EPI7504
- Regional anesthesia improved OS
- No decrease in RFS
- RRM (relative risk of mortality) reduced by 19%

Lee et al. Pain Management. 2015;,5(5):387-395

44



Pancreatic Cancer

- Study designed to evaluate the effects of dexamethasone on pancreatic cancer survival
- Use of perioperative epidural associated with increased survival
- No difference in GA or opioid administration between EPI and NO EPI groups
- Benefits of both dexamethasone and epidurally administered local anesthetics (LAs) were attributed to their antiinflammatory effects, and in case of amide LAs to their anti-proliferative effects on mesenchymal cells.

Tyler et al. Factors Associated with Improved Survival after Resection of Pancreal Adenocarcinoma: A Multivariable Model. Anesthesiology 2 2015. Vol 122, 317-32.

