Combination therapies with CDK4/6 inhibitors to treat KRAS-mutant pancreatic cancer
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Abstract

@ Pancreatic ductal adenocarcinoma (PDAC) patients have a dismal five-year
/N survival rate in the advanced metastatic setting; therefore, the development of
. RAF* . PIBK targeted therapies is a significant unmet clinical need. The two most frequent
| . } genetic events in PDAC (mutational activation of KRAS and loss of the tumor
L - .PCch1 coKae suppressor CDKN2A) converge on activation of the kinases CDK4 and CDK®,
| . . which promote G1 cell cycle progression (A). We found that CDK4/6 inhibitors
(CDK4/6i), which are pharmacologic mimics of pl16'NK4A function, elicited

L ERK I sch-772084 . Co :
, single-agent activity in a subset of KRAS-mutant PDAC cell lines. However,
i “off” p16 “on” applying Reverse Phase Protein Array (RPPA)-based pathway activation
| CycD1 @ s CycD1(CDK4/B) | Palbosiciid mapping analyses, we observed widespread CDK4/6i-induced compensatory

7O O T

signaling activity/expression changes leading to increased ERK-MAPK

P16 .@ CE2F signaling. Concurrent treatment with the ERK1/2 inhibitor (ERKi) SCH772984
. :. WA i YA\ reversed this phenotype, synergistically reduced cell growth, and increased

- both apoptosis and G1 arrest in PDX cell lines and organoid models by a
well-defined mechanism.

Next, we used a CRISPR/Cas9 druggable genome library loss-of-function screen to identify genes that modulated sensitivity to CDK4/6i. We
identified a functionally diverse array of genes that enhanced growth suppression in combination with CDK4/6i, centered around distinct
signaling nodes including cell cycle regulation and mitosis, PISK-AKT-mTOR signaling, SRC family kinase signaling, cell metabolism and
biosynthesis, and DNA damage and repair pathways, suggesting ways to overcome de novo or acquired CDK4/6 inhibitor resistance in the
clinic. Identified synergistic combinations were validated using siRNA and small-molecule inhibitor-based approaches. Our observations

suggest that CDK4/6 inhibitors alone, or in novel combinations, may benefit PDAC patients clinically.

PDAC cells resist CDK4/6 inhibition
ERK-MAPK, PI13K, and anti-apoptoti
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Figure 1: (A) EC., for CDK4/6i (palbociclib) for PDAC cell lines in cell culture. (B) Reverse-phase protein array (RPPA) for
palbociclib. Indicated proteins increase (red) or decrease (blue) expression with palbociclib compared to control. (C) Mean and
distribution of indicated proteins and signaling pathways from (B). Largest compensatory change is increased activating

phosphorylation of ERK.

CDK4/6i synergizes with ERKi in cell lines and PDAC organoids

A MIA PaCa-2
25000 PANC-1 Palbociclib (nM)
10000-
- 0
200004
8000+ ° = 31
c | [] -+ 93
g5 15000 6000+ —
o . ~* 278
8 10000— 40001 [ ] = 833
0 | | T T T 1 0 9 I8 '7 '6 '5
-85 80 -75 -70 -65 -6.0 -55 ) ) ) ) )
Log [SCH772984] (M)
Log [SCH772984] (M)
B) BLISS Score BLISS Score

Antainism

100 110 |
100
| s .
. g Synergy

annasth
S
A”“qell\
238

1 )
S 10 ® QO\,‘ Ky 3,08
\{90 - I QO C&\ G é‘\
v ) c\v > > 1 \0g
“ % < O, t ~ P \\
9') ¢ \'°° 07 ¢ ‘\9\\v
4’} o Q° 4 % o
P 2°
7

C)

D)

1.5-

BLISS Synergy score
o o
o (6}
L [
]
¢
]
o
- ]

1
PRI I IR IR S O O
F U A0 AN U N PP or VP P
TR TS QT e® I PP ®
Q\?“ @) O

hT2 organoids

SCH772984 (40nM)

Palbo (150nM)

Figure 2 (A) Combined CDKA4/6i (palbociclib) with ERKi (SCH772984) at indicated concentrations causes a strong loss of cell
proliferation over 5 days. (B) BLISS synergy calculated from (A) mapped over the viability dose-response curve. Red = synergy,
blue = antagonism. (C) Peak synergy scores for CDK4/61 + ERKIi across a PDAC cell line panel. (D) Effect of CDK4/6i + ERKI on
PDAC organoids ht2 (pictured). This combination is synergistic across a full dose-response matrix. Similar results were obtained

from 7 additional PDAC organoids (data not shown).

Combined CDK4/6i and ERKi inhibition cooperatively induce
apoptosis and enhances anti-proliferative signaling changes

Diverse CRISPR screen hits validated by siRNA counter-screen
to cause synergistic loss of viability with CDK4/6i
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Figure 3 (A) CDK4/6i + ERKI induce apoptosis (FITC-Annexin V/PI staining, flow cytometry, MIA PaCa-2 cells
exemplified). (B) Quantified apoptosis for drugs alone or in combination across multiple PDAC lines. (C) RPPA for
CDK4/61, ERKI, or the combination after 1, 3, 5, or 14 day continuous treatment. The median protein fold change
(red=up, blue=down) is shown from six PDAC cell lines. (D) Log2 fold-change for RB (S780) phosphorylation after 14
days treatment. (E-F) Log2 fold-change over the 14 day timecourse for palbociclib, SCH772984, or the combination
for RSK (S380 phosphorylation, E) and MYC (F).

Loss-of-function CRISPR/Cas9 screen identifies
novel potent combinations with CDK4/6i
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Figure 4 (A) A loss-of-function CRISPR library targeting 2500 proteins in the . ] cDesL
“druggable genome” was used to identify proteins that drive increased E-: et
sensitivity or resistance in combination with CDK4/6i (palbociclib). (B) Scatter e
plot of log2-transformed “gene essentiality” score from the screen (loss of cell - CACNATA
. . . . . E2F3
viability after CRISPR gene silencing in the absence of drug) for MIA PaCa-2 = ZEB1
and Pal6C cells. Loss of some proteins, such as CDK1, KRAS, and MYC E-: - i
reduce cell viability immediately. (C) The addition of palbociclib (EC;, dose) e e
causes selective pressure when compared to DMSO control. Genes were § 44§59 9885 8§ 8§ 4
ranked using Redundant siRNA Analysis (RSA), and plotted by the LogP s £ § £ 28 42 %2
.- - . s o o &8 8 &8 8 8 &8 o o
score for sensitizers (MIA PaCa-2 exemplified). (D) Hits were chosen based BN O O
on the highest median logP value across all cell lines. =
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Figure 5 (A) Indicated gene hits from the CRISPR screen were individually silenced using siRNA, then treated with
palbociclib. Shown is the fold-shift in the EC50 of palbociclib compared to cells receiving non-specific siRNA (red = more
sensitive, blue = less sensitive). (B) STRING interaction map for genes used in counter-screen. (C) Example of data used
to generate (A), including BLISS score synergy calculations for each concentration (red = synergy), for indicated proteins.

CRISPR screen hit CDK2 potently induces apoptosis in

combination with CDK4/6i or ERKi
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Figure 6 (A) Indicated drugs were tested against the panel of PDAC lines in the CRISPR screen; on average, drugs
were synergistic (red), antagonistic (blue), or additive (white); G12C inhibitor was only tested in KRAS G12C lines. (B)
Viability dose-response curves for a combination CDK2/4/6 inhibitor (PF-06873600) with ERKIi. This combination is
mildly synergistic (not shown). (C) Bliss synergy scores for the CDK2/4/6i + ERKi combination in organoids. Shown is
synergy mapped over the dose-response curves (red = synergism, blue = antagonism). (D) Apoptosis for DMSO,
CDK4/6i, and CDK2/4/61 (annexin V/PI staining, flow cytometry, MIA PaCa-2 exemplified). (E) Quantification of (D) and
two additional PDAC lines. (F) Average cell cycle distribution for six PDAC cell lines after treatments for 72 hours.

This research was financially supported by the NIH F32 Individual Postdoctoral
Fellowship Award (1 F32 CA221005-01) and the UNC Lineberger Integrated

Training in Cancer Model Systems (ITCMS) Training Grant.



