

8

Our Presenter

4. Lori Ramkissoon, PhD is Director of the Cytogenetics laboratory at the University of North Carolina Medical Center

11

Our Presenter

- 4. Lori Ramkissoon, PhD is Director of the Cytogenetics laboratory at the University of North Carolina Medical Center
- 3. She earned her PhD from Weill Cornell Graduate School of Medical Sciences and did a postdoctoral fellowship at Dana-Farber Cancer Institute

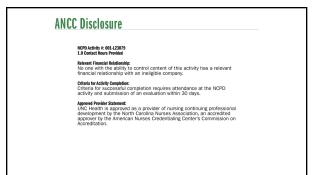
Our Presenter

- 4. Lori Ramkissoon, PhD is Director of the Cytogenetics laboratory at the University of North Carolina Medical Center
- 3. She earned her PhD from Weill Cornell Graduate School of Medical Sciences and did a postdoctoral fellowship at Dana-Farber Cancer Institute
- 2. Prior to graduate school, she was a pre-doctoral fellow in the laboratory of Dr. Neal Young at the National Heart, Lung and Blood Institute in Bethesda, MD

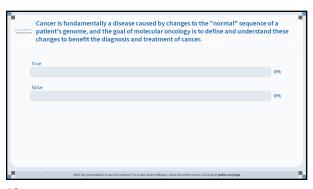
13

Cour Presenter Lori Ramkissoon, PhD is Director of the Cytogenetics laboratory at the University of North Carolina Medical Center She earned her PhD from Weill Cornell Graduate School of Medical Sciences and did a postdoctoral fellowship at Dana-Farber Cancer Institute Prior to graduate school, she was a pre-doctoral fellow in the laboratory of Dr. Neal Young at the National Heart, Lung and Blood Institute in Bethesda, MD She worked for a year as a staff assistant in the United States Senate.

14



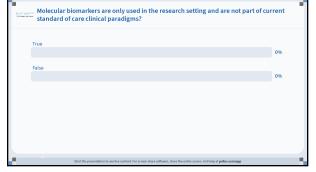
ACCME Disclosure


This activity has been planned and implemental under the sole supervision of the Course Director, Stephania Wheeler, no saw, in association with the UNC Office of Continuing Professional Development (PD). The course director reselved research support from AstraZenees (ended June 2023) and Pitzer Medical Foundation (ended) December have no relevant functial relationships with ineligible companies as defined by the ACCME.

A potential control of interest occurs when an individual has an opportunity to affect aducational content about health-care products and the second secon

16

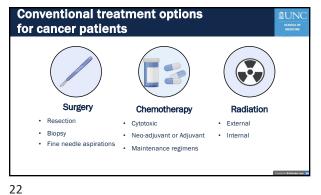
17

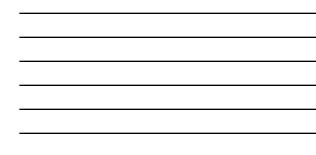


From Bench to Bedside: Molecular Oncology's Role in Personalized Cancer Diagnosis and Treatment

Lori Ramkissoon, PhD Lori.Ramkissoon@unchealth.unc.edu May 8, 2024

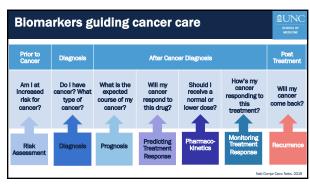
19




20

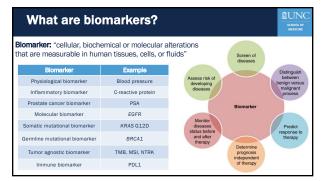
Learning Objectives

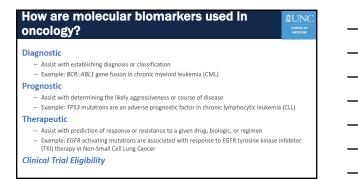
- Review advancements in the laboratory methods used to detect molecular biomarkers in oncology specimens
- Illustrate how molecular biomarkers have been integrated into diagnostic algorithms for certain cancer types
- Discuss the contributions of molecular oncology in treatment strategies



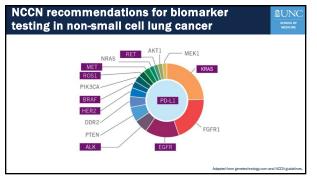
Advancement in treatment options

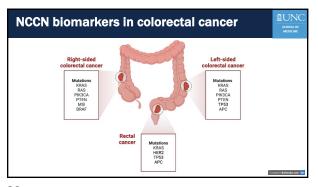
23

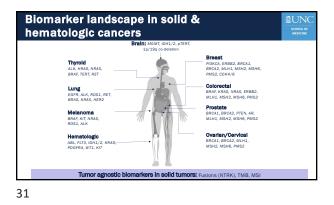




Molecular biomarkers in cancer



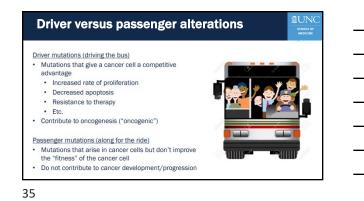


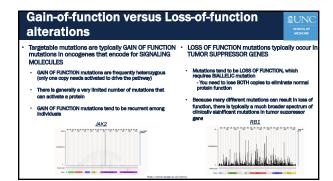


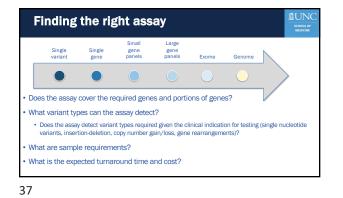
NCCN Guidelines and biomarkers	
 Currently more than 800 biomarker recommendations are included in NCCN Guidelines 	
 Determine risk of disease (BRCA-1/BRCA-2) Screening (PSA for prostate) Diagnostic (BCR/ABL in CML) Prognostic (CA 19-9 in pancreas) Predictive (ER/PR status in breast) Risk of toxicity (UGT1A1*28 allele for irinotecan) Response/disease monitoring (AFP; HCG in 	
testicular)	

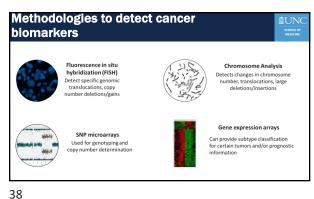
29

ASCO Guidelines SOMATIC GENOMIC TESTING IN PATIENTS WITH METASTATIC OR ADVANCED CANCER PROVISIONAL CLINICAL OPINION WHICH METASTATIC OR ADVANCED SOLID TUMORS SHOULD UNDERGO GENOMIC SEQUENCING? Patients with metastatic or advanced solid tumors if there are genomic biomarker-linked therapies for that disease approved by the relevant regulatory agency (FDA) Patients with metastatic or advanced solid tumors if there are clearly defined resistance markers for a treatment being considered.

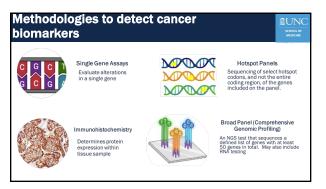


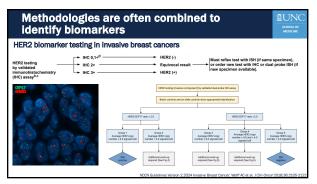


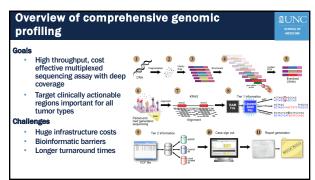

Types of g cancer bio	enomic alterations that do omarkers	
	Base Pair Substitutions • Limited to a single base pair/region within a single gene • Examples: EGFR L858R, T790M: BAF V600E, IDH1 R132H	Insertions/deletions United to single genes and small changes in DNA sequence Examples: EGFR exon 19 deletions, MET exon 14
	Copy Number Alterations Overexpression/amplification Examples: HEP2 amplification, PDGFRA amplification	Gene Rearrangements (Fusions)

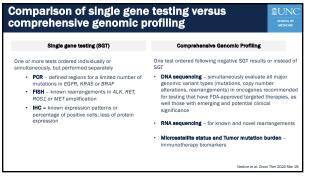

_

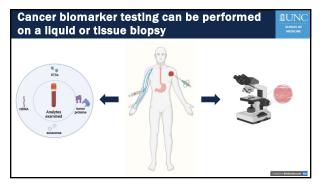
34

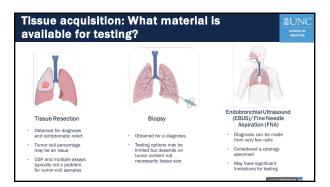


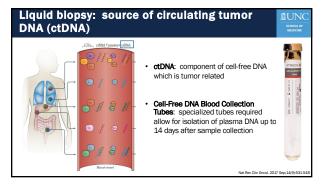


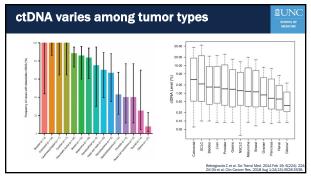


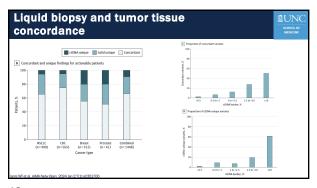


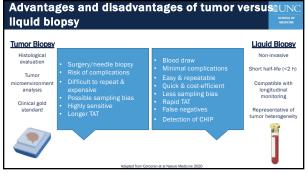

Methodologies identify bioma		combined	to	
HER2 biomarker testing in	invasive breast (cancers		
HER2 testing by validated immunohistochemistry (IHC) assay ^{b,C}	· •	HER2 (-) Equivocal result	Must reflex test with ISH (if same or order new test with IHC or dua new specimen available).	
1. S.	1 s			
1+: IHC	2+: IHC	3+	IHC	


41

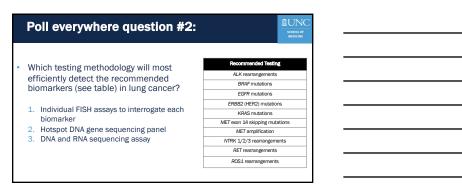


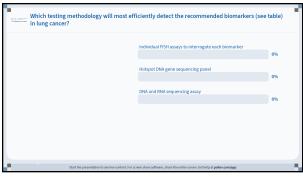


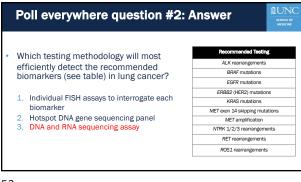

44

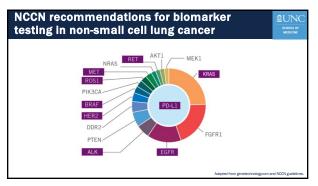


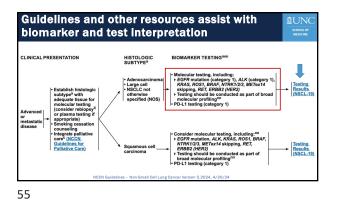
47

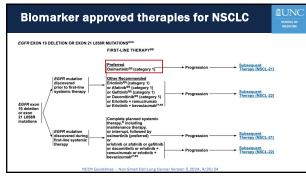


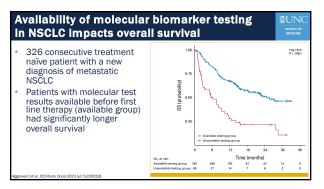




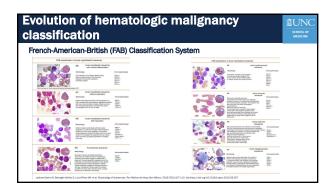


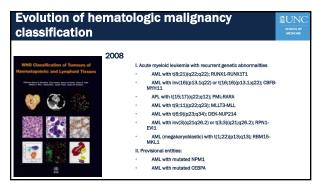


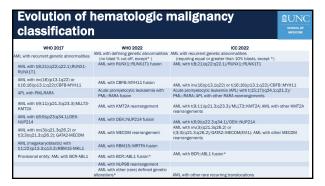

53

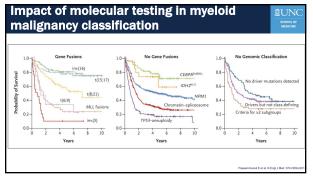


-20 -23 -24
L-23
24
L-25
-26
-29
-31
-32
-33
-34
L-35
L-36
-37
SCI SCI

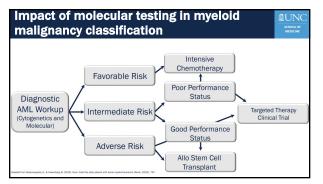





59

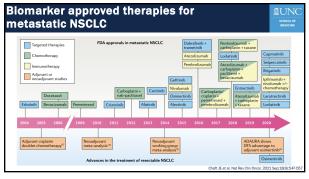


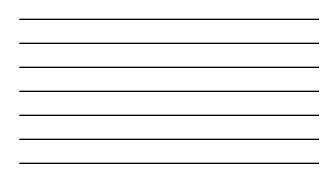
Evolution of he classification	matologic malignancy	
World Health Organization Classification of Turnours	2001	
Pathology & Genetics Tumours of Haematopoietic and Lymphoid Tissues	I. Acute myeloid leukaemias with recurrent cytogenetic translocations • AML with t(8:21)(a22:a22).AML1(CBFa)/ETO	
	 Acute promyelocycle leukaemia (AUL with t(15;17)(q22;q11-12) and variants, PML/RARa) AML with abnormal bone marrow eosinophils (invt(9)(p13)q22) or (15):616(p13);q11); GBFb/MYH11X) 	
	AML with 11q23 (MLL) abnormalities.	

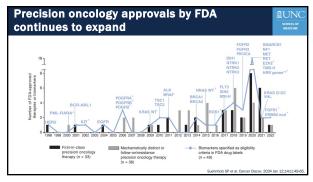


62

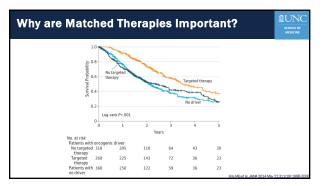
65




olution of molecular nors	ly classified CNS
WHO 2016 GLIOMAS use Astrocytic and Oligodendroglial Tumours	WHO 2021 GLIOMAS Gliomas, Glioneural and Neuronal Tumours
Classification	Adult-type diffuse gliomas
Diffuse Astrocytoma, IDH-mutant Gemistocytic astrocytoma, IDH-mutant	Astrocytoma, IDH-mutant Oligodendroglioma, IDH-mutant and 1p/190-codeleted
Diffuse astrocytoma, IDH-wildtype	 Gioblastoma, IDH-wildtype
Diffuse astrocytoma, NDS	Paediatric-type diffuse low-grade gliomas
Anaplastic astrocytoma, IDH-mutant	Diffuse astrocytoma, MY8 or MY8L1 – altered
Anaplastic astrocytoma, IDH – wildtype	Angiocentric glioma
Anaplastic astrocytoma, NOS	 Polymorphous low-grade neuroepithelial turnour of the young Diffuse low-grad along, MAPK opthway-altered.
Giloblastoma, IDH-wildtype Gint cel giloblastoma Gisosrcoma Epithelioid giloblastoma	Paediatric-type diffuse high-grade gliomas • Diffuse midling glioma, H3 K27- altered
Glioblastoma, IDH-mutant	 Diffuse hemispheric glioma, H3 G34-mutant Diffuse paediatric-type high-grade glioma, H3 wild-type and IDH wild
Glioblastoma, NOS	type
Diffuse midline glioma, H3 K27M mutant	 Infant-type hemispheric glioma
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted	
Oligodendroglioma, NOS	
Anaplastic, oligodendroglioma, IDH-mutant and 1p/19q-codeleted	
Anaplastic oligodendroglioma, NOS	
Oligoastrocytoma, NOS	
Anaplastic oligoastrocytoma, NOS	



68

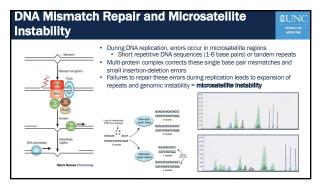


71

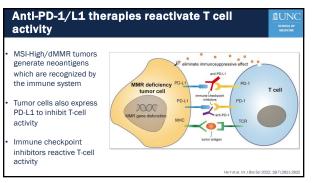
Poll everywhere question #3:	
In a patient with newly diagnosed colon cancer, testing determin that the tumor had microsatellite instability (MSI) or was MSI-hig Which of the following treatment strategies is indicated for MSI-I status?	gh.
 A combination therapy of cetuximab and irinotecan. Monotherapy with a TRK inhibitor. Targeted therapy with a BRAF inhibitor 	

4. Initiation of therapy with a PD-1 or PD-L1 immune checkpoint inhibitor.

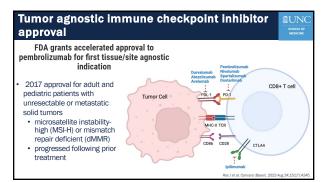
73

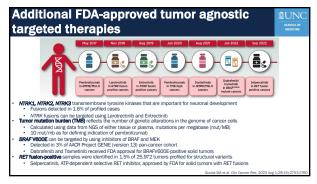

74

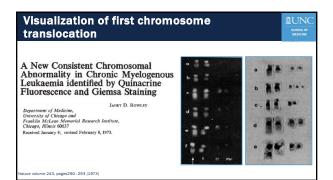
Poll everywhere question #3:

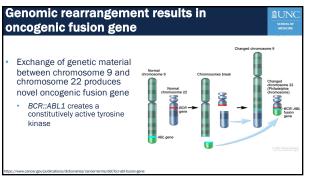

In a patient with newly diagnosed colon cancer, testing determined that the tumor had microsatellite instability (MSI) or was MSI-high. Which of the following treatment strategies is indicated for MSI-high status?

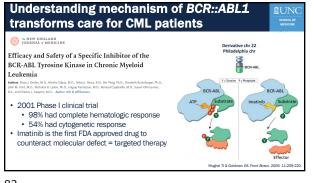
- 1. A combination therapy of cetuximab and irinotecan.
- 2. Monotherapy with a TRK inhibitor.
- 3. Targeted therapy with a BRAF inhibitor
- 4. Initiation of therapy with a PD-1 or PD-L1 immune checkpoint inhibitor.



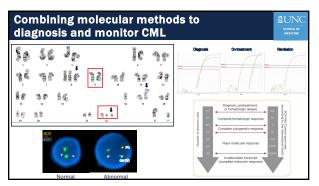


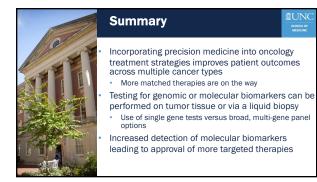

77





80





83

Ques	tions/Comments?
	Nobody has responded yet.
	Hang tight! Responses are coming in.
-	Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollew.com/app

For Educational Use Only

89

